Persyaratan beton struktural untuk rumah tinggal
Daftar Isi

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daftar Isi</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>Prakata</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>Pendahuluan</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>1</td>
<td>Umum</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Lingkup</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Sistem alternatif</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Fondasi tapak dan dinding fondasi</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Gambar dan spesifikasi</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Inspeksi</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Acuan Normatif</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Notasi dan definisi</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Notasi</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>Definisi</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Material</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Beton</td>
<td>10</td>
</tr>
<tr>
<td>4.2</td>
<td>Tulangan</td>
<td>10</td>
</tr>
<tr>
<td>4.3</td>
<td>Cetakan</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Persyaratan Beton</td>
<td>11</td>
</tr>
<tr>
<td>5.1</td>
<td>Persyaratan umum</td>
<td>11</td>
</tr>
<tr>
<td>5.2</td>
<td>Properti beton</td>
<td>12</td>
</tr>
<tr>
<td>5.3</td>
<td>Selimut beton</td>
<td>14</td>
</tr>
<tr>
<td>5.4</td>
<td>Kalsium klorida</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Produksi dan pengecoran beton</td>
<td>15</td>
</tr>
<tr>
<td>6.1</td>
<td>Beton</td>
<td>15</td>
</tr>
<tr>
<td>6.2</td>
<td>Pengecoran</td>
<td>16</td>
</tr>
<tr>
<td>6.3</td>
<td>Pembongkaran cetakan</td>
<td>16</td>
</tr>
<tr>
<td>6.4</td>
<td>Penyelesaian</td>
<td>16</td>
</tr>
<tr>
<td>6.5</td>
<td>Perawatan</td>
<td>17</td>
</tr>
<tr>
<td>6.6</td>
<td>Cuaca dingin</td>
<td>17</td>
</tr>
<tr>
<td>6.7</td>
<td>Cuaca panas</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Fondasi tapak</td>
<td>17</td>
</tr>
<tr>
<td>7.1</td>
<td>Umum</td>
<td>17</td>
</tr>
<tr>
<td>7.2</td>
<td>Desain</td>
<td>18</td>
</tr>
<tr>
<td>7.3</td>
<td>Konstruksi</td>
<td>23</td>
</tr>
</tbody>
</table>
8 Dinding Fondasi ... 26
8.1 Umum ... 26
8.2 Desain .. 27
8.3 Konstruksi .. 34
9 Desain Untuk Tanah Ekspansif ... 35
9.1 Umum .. 35
9.2 Klasifikasi tanah ekspansif ... 35
9.3 Desain .. 35
10 Slab di atas tanah .. 36
10.1 Desain .. 36
10.2 Tumpuan .. 36
10.3 Cetakan .. 37
10.4 Ketebalan .. 37
10.5 Joint ... 37
10.6 Tulangan ... 38
Lampiran A ... 39
Bibliografi ... 50

Gambar 1 - Luas tributari untuk fondasi tapak setempat. .. 20
Gambar 2 - Fondasi tapak dinding tak menerus dan tulangan dinding tambahan. 22
Gambar 3 - Fondasi tapak slab dipertebal dengan joint konstruksi horizontal.................... 23
Gambar 4 - Fondasi tapak slab eksterior dipertebal tanpa cetakan. 24
Gambar 5 - Fondasi tapak interior dipertebal tanpa cetakan. .. 25
Gambar 6 - Joint dinding ke fondasi tapak dengan pasak. ... 25
Gambar 7 - Joint dinding ke fondasi tapak dengan jalur kunci. .. 26
Gambar 8 - Dinding fondasi beton bertulang .. 31
Gambar 9 - Reduksi ketebalan dinding.. 32
Gambar 10 - Tulangan balok lintel .. 33
Gambar 11 - Tulangan sudut re-entrant .. 34

Tabel 1 - Informasi batang tulangan baja ... 11
Tabel 2 - Kekuatan tekan minimum yang ditetapkan (f′c, MPa) saat 28 hari dan slump beton maksimum yang ditetapkan .. 13
Tabel 3 - Kadar udara untuk beton Tipe 3 dengan ekspose sedang atau parah terhadap pembekuan dan pencairan ... 13
Tabel 4 - Nilai maksimum yang ditetapkan untuk tabel preskriptif dalam Pasal 7 18
Tabel 5 - Lebar minimum fondasi tapak dinding yang ditetapkan, mm*†............................. 34

© BSN 2016
Tabel 6 - Ukuran dan tulangan minimum yang ditetapkan untuk fondasi tapak terpisah, mm**

Tabel 7 - Spasi maximum joint kontraksi yang ditetapkan untuk slab di atas tanah tanpa tulangan baja

Tabel A.1—Spasi batang tulangan vertikal untuk dinding besmen beton
Tabel A.2—Spasi batang tulangan vertikal untuk dinding besmen beton
Tabel A.3—Spasi batang tulangan vertikal untuk dinding besmen beton
Tabel A.4—Spasi batang tulangan vertikal untuk dinding besmen beton
Tabel A.5—Spasi batang tulangan vertikal untuk dinding besmen beton
Tabel A.6—Spasi batang tulangan vertikal untuk dinding besmen beton
Tabel A.7—Spasi batang tulangan vertikal untuk dinding besmen beton
Tabel A.8—Spasi batang tulangan vertikal untuk dinding besmen beton
Tabel A.9—Spasi batang tulangan vertikal untuk dinding besmen beton
Tabel A.10—Spasi batang tulangan vertikal untuk dinding besmen beton
Prakata

Standar Nasional Indonesia (SNI) tentang “Persyaratan beton struktural untuk rumah tinggal” mencakup desain dan konstruksi beton cetak in-situ dan mengacu pada ACI 332 M-10, *Residential code requirements for structural concrete* untuk hunian terpisah untuk satu dan dua keluarga, hunian berbagi dinding untuk dua keluarga, dan hunian majemuk berbagi dinding masing-masing untuk satu keluarga (rumah perkotaan), dan struktur aksesornya.

Standar ini dimaksudkan agar dapat dijadikan referensi bersama-sama dengan standar bangunan umum lainnya. Di antara subjek yang tercakup adalah persyaratan desain dan konstruksi untuk fondasi tapak beton polos dan bertulang, dinding fondasi, dan slab di atas tanah (slab-on-ground), dan persyaratan untuk beton, tulangan, cetakan, dan material terkait lainnya. Kualitas dan pengujian material yang didiskusikan dalam dokumen ini merujuk pada standar ASTM yang sesuai.

Detail latar belakang atau saran - saran untuk memenuhi persyaratan - persyaratan dituliskan dalam bagian penjelasan. Bagian penjelasan mendiskusikan beberapa pertimbangan dalam mengembangkan Standar ini terutama penjelasan mengenai hal - hal yang kurang dikenal oleh para pengguna atau yang berkaitan erat dengan standar beton lainnya. Bagian penjelasan diawali dengan huruf “S” seperti “S.1.1.1”, dan teks bagian penjelasan dituliskan dalam huruf miring. Dokumen sumber -sumber yang relevan dicantumkan agar pengguna dapat melakukan Studi lebih lanjut.

Pendahuluan

Referensi mengenai data-data penelitian diinformasikan pada bagian lampiran. Standar ini dimaksudkan untuk digunakan sebagai bagian dari standar bangunan yang diadopsi secara legal dan bisa berbeda dalam bentuk dan substansi dari dokumen yang menyediakan spesifikasi detail, praktek yang direkomendasikan, atau prosedur desain lengkap.

Standar ini dimaksudkan untuk mencakup semua struktur perumahan maksimum tiga tingkat. Persyaratan yang lebih ketat dari ketentuan Standar ini bisa dipergunakan untuk struktur yang besar, kompleks atau tidak beraturan, di daerah yang sangat berbahaya, dan konstruksi tak lazim lainnya. Standar ini dan penjelasannya tidak dapat menggantikan pengetahuan, pengalaman, dan kearifan rekayasa yang kuat.

Standar ini tidak mempunyai status legal kecuali bila diadopsi oleh badan pemerintah yang mempunyai wewenang untuk mengatur desain dan konstruksi bangunan. Jika Standar ini belum diadopsi, standar ini dapat dijadikan sebagai sebuah referensi untuk praktek yang baik meskipun tidak mempunyai status legal.

Standar ini menggunakan beberapa acuan normatif dan dokumen bibliografi yang diterbitkan oleh organisasi berikut:

American Concrete Institute
38800 Country Club Drive
Farmington Hills, MI 48331
www.concrete.org

ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428
www.astm.org

International Code Council
500 New Jersey Avenue, NW
6th Floor, Washington, DC 20001
www.iccsafe.org

Portland Cement Association
5420 Old Orchard Road
Skokie, IL 60077
www.cement.org

American Society of Civil Engineers
1801 Alexander Bell Drive
Reston, VA 20191
www.asce.org

Concrete Foundations Association
P.O. Box 204
Mount Vernon, IA 52314
www.cfawalls.org

California Department of Transportation
Engineering Service Center
Transportation Laboratory
5900 Folsom Boulevard
Sacramento, CA 95819-4612
http://www.dot.ca.gov/hq/esc/

Post-Tensioning Institute
38800 Country Club Drive
Farmington Hills, MI 48331
www.post-tensioning.org

Wire Reinforcement Institute
942 Main Street, Suite 300
Hartford, CT 06103
www.wirereinforcementinstitute.org
1 Umum

1.1 Lingkup

1.1.1 Standar ini, bila secara legal diadopsi sebagai bagian dari standar bangunan gedung umum, menyediakan persyaratan minimum untuk desain dan konstruksi elemen struktur beton perumahan. Standar ini mendefinisikan standar penerimaan minimum desain dan praktek konstruksi.

1.1.2 Standar ini melengkapi standar bangunan gedung umum dan mengatur masalah - masalah terkait dengan desain dan konstruksi beton cetak di tempat untuk hunian terpisah untuk satu dan dua keluarga, dan hunian berbagi dinding untuk dua keluarga dan hunian majemuk berbagi dinding masing - masing untuk satu keluarga (rumah perkotaan), dan struktur aksesorinya, kecuali dalam kasus Standar ini bertentangan dengan persyaratan standar bangunan gedung umum yang diadopsi secara legal.

1.1.3 Standar ini dibatasi untuk desain dan konstruksi fondasi tapak beton, termasuk fondasi tapak slab yang dipertebal, fondasi tapak dinding, dan fondasi tapak setempat; besmen beton atau dinding fondasi yang dibangun dengan cetakanyang dapat dibongkar atau dengan cetakan beton penyekat datar; dan slab beton di atas tanah.

CATATAN Persyaratan desain dan konstruksi untuk fondasi tapak, dinding fondasi, dan slab di atas tanah tercakup dalam Standar ini, bersama-sama dengan persyaratan untuk beton, tulangan, cetakan, dan material terkait lainnya.

1.1.5 Standar ini tidak mengatur desain dan konstruksi dari dinding cetakan beton penyekat dengan konfigurasi wafel atau layar (screen); elemen dinding pracetak; dinding beton mutu lebih tinggi; sistem fondasi dalam, seperti fondasi tiang, pier bor, atau caisson; dan slab beton menggantung(elevated concrete slab).

1.1.6 Standar ini tidak mengatur desain dan aplikasi sistem untuk drainase permukaan, pengedap airan, pengedap lembaban, dan ventilasi gasradon (elemen gas radioaktif dari disintegrasri radium).

CATATAN Panduan mengenai tipe dan aplikasi sistem drainase, pengedap airan, pengedap lembaban, dan ventilasi gas radon biasanya ditemukan dalam standar bangunan gedung umum.
1.1.7 Bila bangunan gedung atau struktur mengandung elemen yang melebihi batasan Standar ini atau sebaliknya tidak memenuhi Standar ini, elemen ini harus didesain sesuai dengan SNI 2847:2013.

1.1.8 Bila diizinkan oleh statuta yurisdiksi dimana proyek tersebut dibangun, dokumen konstruksi untuk rumah tinggal yang didesain dengan ketentuan Standar ini tidak perlu disiapkan oleh Tenaga Ahli Bersertifikat. Bila disyaratkan oleh statuta yurisdiksi dimana proyek tersebut dibangun, Tenaga Ahli Bersertifikat harus menyiapkan dokumen konstruksi untuk rumah tinggal.

1.1.9 Standar ini ditujukan hanya untuk menetapkan persyaratan minimum yang diperlukan untuk menyediakan kesehatan dan keamanan publik untuk desain rumah tinggal yang masuk dalam lingkup International Residential Code (IRC). Pemilik atau Tenaga Ahli Bersertifikat dapat mensyaratkan kualitas material dan konstruksi agar lebih tinggi dari persyaratan minimum yang ditetapkan dalam Standar ini.

1.1.10 Standar ini tidak ditujukan untuk mendefinisikan tanggung jawab kontrak antara semua pihak yang terlibat dalam suatu proyek, atau pun untuk menyesuaikan perselisihan terkait tanggung jawab kontrak.

1.1.11 Teks penjelasan Standar, tabel, gambar, atau ilustrasi tidak boleh digunakan untuk menginterpretasikan Standar ini bila bertentangan dengan makna dasar teks Standar ini, atau menimbulkan makna ganda dalam Standar ini.

1.2 Sistem alternatif

Sistem desain atau pelaksanaan konstruksi atau material alternatif yang diaplikasikan dalam lingkup Standar ini, yang kecukupannya telah ditunjukkan dengan keberhasilan penggunaan atau dengan analisis atau pengujian, tetapi yang tidak sesuai atau tidak dicakup oleh Standar ini, dapat digunakan datanya dengan persetujuan dari instansi pemerintah yang berwenang atau badan pemeriksa yang ditunjuk oleh instansi pemerintah yang berwenang. Badan ini mempunyai wewenang untuk memeriksa data yang diserahkan, mensyaratkan pengujian, dan merumuskan aturan desain dan konstruksi sistem tersebut untuk memenuhi tujuan Standar ini. Aturan ini, jika disetuju oleh instansi dan diumumkan, mempunyai kekuatan dan pengaruh yang sama seperti ketentuan Standar ini.

CATATAN Metode desain baru, material baru, dan penggunaan material baru harus melalui periode pengembangan sebelum secara spesifik dicakup dalam sebuah standar. Jadinya, sistem atau komponen yang baik mungkin tidak dicakup jika tidak tersedia cara untuk memperoleh penerimaan. Untuk sistem yang ditinjau menurut subpasal ini, pengujian spesifik, faktor beban, batas defleksi, dan persyaratan terkait lainnya harus ditetapkan oleh badan pemeriksa, dan harus konsisten dengan tujuan dokumen ini.

1.3 Fondasi tapak dan dinding fondasi

Desain dan konstruksi fondasi tapak dan dinding fondasi beton masing-masing harus sesuai dengan ketentuan Pasal 7 dan 8.

1.3.1 Desain seismik—Tingkat resiko seismik suatu daerah, atau kinerja seismik atau kategori desain suatu struktur, harus diatur oleh standar bangunan gedung umum yang diadopsi secara legal, dimana Standar ini merupakan bagiannya, atau ditentukan oleh otoritas lokal.
1.3.2 Desain untuk tanah ekspansif—Desain beton untuk tanah ekspansif harus sesuai dengan ketentuan Pasal 9.

1.4 Gambar dan spesifikasi

Semua desain untuk konstruksi beton cetak di tempat yang tidak dicakup oleh ketentuan desain atau tabel preskriptif Standar ini perlu mendapatkan persetujuan Tenaga Ahli Bersertifikat.

1.5 Inspeksi

Konstruksi semua elemen beton yang dicakup oleh Standar ini harus diinspeksi seperti yang disyaratkan oleh standar bangunan gedung umum yang diadopsi secara legal.

2 Acuan Normatif

Untuk acuan bertahun, hanya berlaku edisi yang disebutkan. Untuk acuan tak bertahun, berlaku edisi mutakhir dokumen acuan (termasuk setiap amendemen):

SNI 1726:2012 Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung
SNI 1727:2013 Beban minimum untuk perancangan bangunan gedung dan struktur lain
SNI 2049 Semen portland
SNI 2847:2013 Persyaratan beton struktural untuk bangunan gedung

American Concrete Institute
301M-05 Specifications for Structural Concrete
318M-08 Building Code Requirements for Structural Concrete and Commentary

ASTM International
A82M-07 Standard Specification for Steel Wire, Plain, for Concrete Reinforcement
A185M-07 Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete
A416M-06 Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete
A496M-07 Standard Specification for Steel Wire, Deformed, for Concrete Reinforcement
A497M-07 Standard Specification for Steel Welded Wire Reinforcement, Deformed, for Concrete
A615M-09b Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
A706M-09b Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement
A996M-09b Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement
C33M-08 Standard Specification for Concrete Aggregates
3 Notasi dan definisi

3.1 Notasi

\[d_b = \text{diameter batang tulangan baja, mm} \]
\[f_{c'} = \text{kekuatan tekan beton yang ditetapkan, MPa} \]
\[f_y = \text{kekuatan leleh minimum yang ditetapkan, MPa} \]
\[M_n = \text{kekuatan momen nominal pada penampang, N-mm} \]
\[S = \text{modulus penampang elastis, mm}^3 \]
3.2 Definisi

3.2.1 bahan campuran tambahan (admixture)
material selain air, agregat, dan material sementisius yang digunakan sebagai bahan dasar campuran sementisius untuk memodifikasi properti campuran beton segar, pengikatan, atau pengerasannya dan yang ditambahkan pada adukan (batch) sebelum atau selama pencampurnannya.

3.2.2 bahan campuran tambahan, pereduksi air (admixture, water-reducing)
bahan campuran tambahan, baik yang meningkatkan slump mortar atau campuran beton segar tanpa meningkatkan kadar air atau yang mempertahankan slump dengan sejumlah air tereduksi yang pengaruhnya terjadi akibat faktor - faktor selain dari pengisian udara.

3.2.3 pengisian udara (air entrainment)
penggabungan udara dalam bentuk gelembung mikroskopik (secara tipikal lebih kecil dari 1 mm) selama pencampuran baik beton ataupun mortar.

3.2.4 kapasitas tumpu yang diizinkan (allowable bearing capacity)
tekanan maksimum dimana tanah atau material lainnya harus dicegah dari kegagalan geser atau penurunan yang berlebihan.

3.2.5 slag tanur pancar (blast-furnace slag)
produk nonmetalik yang kandungan pokoknya silikat dan alumino silikat dari kalsium dan bahan - bahan dasar lainnya yang terbentuk dalam kondisi leleh secara bersamaan dengan besi dalam tanur pancar.

3.2.5.1. slag tanur pancar, didinginkan udara (blast-furnace slag, air-cooled)
material yang dihasilkan dari pemadatan slag tanur pancar yang meleleh dalam kondisi atmosfirik; pendinginan selanjutnya dapat dipercepat dengan pemberian air pada permukaan yang memadat;

3.2.5.2. slag tanur pancar, dikembangkan (blast-furnace slag, expanded)
material selular, densitas rendah yang diperoleh dengan pemrosesan terkontrol slag tanur pancar yang meleleh dengan air, atau air dan bahan perantara lainnya, seperti uap, udara bertekanan, atau keduanya;

3.2.5.3. slag tanur pancar, dibutirkan (blast-furnace slag, granulated)
material berbutir, mengkilap yang terbentuk saat slag tanur pancar yang meleleh secara cepat didinginkan, seperti dengan perendaman dalam air; dan

3.2.5.4. slag tanur pancar, dibutirkan digilas (blast-furnace slag, ground-granulated)
istilah kuno; lihat semen, slag (cement, slag).

3.2.6 sekat (bulkhead)
partisi dalam cetakan yang membendung beton segar dari suatu potongan cetakan, atau partisi yang menutup suatu potongan cetakan, seperti pada joint konstruksi.

3.2.7
seluler, material *(cellular, material)*
material yang mengandung banyak sel (baik terbuka atau tertutup, atau keduanya) yang menyebar pada seluruh masa.

3.2.8
semen, hidraulis *(cement, hydraulic)*
material pengikat yang mengikat dan mengeras oleh reaksi kimiawi dengan air dan dapat terjadi dalam air. Sebagai contoh, semen *portland* dan semen slag merupakan semen hidraulis.

3.2.9
semen, portland *(cement, portland)*
semen hidraulis yang diproduksi dengan penghancuran klinker menjadi bubuk yang dibentuk dengan pemanasan campuran, biasanya batu kapur *(limestone)* dan tanah liat, 760 sampai 870°C. Kalsium sulfat biasanya digilas dengan klinker untuk mengendalikan pengikatan.

3.2.10
semen, slag *(cement, slag)*
slag tanur pancar berbutir yang telah digilas halus, yaitu semen hidraulis.

3.2.11
kompon, perawatan *(compound, curing)*
cairan yang dapat diaplikasikan sebagai pelapis *(coating)* pada permukaan beton yang baru dicor untuk menghambat kehilangan air dan, dalam kasus senyawa berpigmen, untuk merefleksikan panas agar beton berkesempatan untuk membentuk propertinya dalam lingkungan dengan suhu dan kelembapan yang baik.

3.2.12
beton, mengalir *(concrete, flowing)*
campuran beton kohesif dengan *slump* lebih besar dari 190 mm.

3.2.13
beton, polos *(concrete, plain)*
beton struktural tanpa tulangan atau dengan tulangan kurang dari jumlah minimum yang ditetapkan dalam SNI 2847, kecuali seperti dimodifikasi dalam Pasal 7.2 Standar ini.

3.2.14
beton, bertulangan *(concrete, reinforced)*
beton struktural dengan tulangan tidak kurang dari jumlah minimum baja prategang atau tulangan non prategang seperti ditetapkan oleh SNI 2847-2013, kecuali seperti dimodifikasi dalam Pasal 7.2 Standar ini.

3.2.15
sirip *(fin)*
proyeksi linier sempit pada permukaan beton yang dicetak, yang dihasilkan dari mortar yang mengalir ke dalam ruang dalam cetakan.

3.2.16
abu terbang *(fly ash)*
residu terbagi halus yang dihasilkan dari pembakaran batu bara gilas atau bubuk dan yang diangkut oleh gas buang dari zona pembakaran ke sistem penghilang partikel.
3.2.17
fondasi tapak (footing)
elemen struktural fondasi yang menyalurkan beban secara langsung ke tanah.

3.2.18
fondasi (foundation)
sistem elemen struktural yang menyalurkan beban dari struktur di atasnya ke bumi.

3.2.19
tinggi, timbunan tak seimbang (height, unbalanced backfill)
perbedaan tinggi tanah penyelesaian pada tiap sisi dinding.

3.2.20
tinggi, timbunan tak seimbang (height, unbalanced backfill)
bilamana tersedia slab beton interior, timbunan tak seimbang harus diukur dari tingkat tanah
penyelesaian eksterior ke sisi teratas slab beton interior.

3.2.21
sarang tawon (honeycomb)
rongga yang tertinggal dalam beton akibat kegagalan mortar mengisi ruang secara efektif
antara partikel agregar kasar.

3.2.22
cetakan beton penyekat (insulating concrete forms (ICFs))
sistem cetakan beton yang menggunakan cetakan tetap di tempat dari penyekat plastik busa
kaku, hibrida semen dan penyekat busa, hibrida semen dan serpihan kayu, atau material
penyekat lainnya untuk konstruksi dinding beton cetak di tempat.

3.2.23
cetakan beton penyekat, rata (insulating concrete forms, flat)
sistem cetakan beton penyekat yang menghasilkan dinding beton pejal dengan tebal
seragam.

3.2.24
Joint (joint)

3.2.24.1
pemisahan fisik dalam sistem beton, baik pracetak ataupun cetak di tempat, termasuk retak -
retak jikalau secara sengaja dibuat agar terjadi di lokasi-lokasi yang ditetapkan; atau

3.2.24.2
daerah dimana komponen struktural berpotongan.

3.2.25
joint, kontraksi (joint, contraction)
alur yang dicetak, digergaji, atau dibuat dengan alat pada struktur beton untuk menghasilkan
bidang perlemahan dengan cara mengatur lokasi retak yang diakibatkan dari perubahan
dimensi bagian - bagian struktur yang berbeda.

3.2.26
joint, isolasi (joint, isolation)
pemisahan antara bagian - bagian struktur yang menyatu yang membolehkan pergerakan
relatif dalam tiga arah; biasanya bidang vertikal yang ditempatkan untuk menghindari
pembentukan retak pada struktur. (Lihat juga joint, kontraksi (joint, contraction).)
3.2.27
jalur kunci (keyway)
alur dalam sebuah pengecoran beton yang diisi dengan beton dari pengecoran berikutnya, yang memberikan kekuatan geser pada joint.

3.2.28
Tenaga Ahli Bersertifikat (Licensed Design Professional)
individu yang bersertifikat untuk mempraktekkan desain struktural seperti yang didefinisikan oleh persyaratan hukum undang-undang serta sertifikasi tenaga ahli dari negara atau yurisdiksi dimana proyek tersebut dibangun dan yang bertanggungjawab atas desain struktural.

3.2.29
beban, mati (load, dead)
berat mati (tanpa faktor beban) yang didukung oleh komponen struktur, seperti didefinisikan oleh standar bangunan gedung umum dimana Standar ini merupakan bagianya.

3.2.30
beban, hidup (load, live)
beban hidup (tanpa faktor beban) yang dispesifikasikan oleh standar bangunan gedung umum dimana Standar ini merupakan bagiannya.

3.2.31
beban, atap (load, roof)
beban hidup atap (tanpa faktor beban) yang dispesifikasikan oleh standar bangunan gedung umum dimana Standar ini merupakan bagiannya; beban hidup spesifik yang diaplikasikan pada struktur.

3.2.32
material, sementisius
semen pozolan dan hidraulis. (Lihat juga abu terbang (fly ash); fum silika (silica fume); semen (cement), slag (slag).)

3.2.33
tulangan (reinforcement)
batang, kawat, stran(strand), atau komponen struktur langsing lainnya yang dibenamkan dalam beton dengan cara sedemikian rupa sehingga mereka dan beton bekerja bersama-sama dalam menahan gaya.

3.2.34
kategori desain seismik (seismic design category (SDC))
klasifikasi yang diberikan pada struktur berdasarkan pada kategori huniannya dan level gempa bumi desain di lokasi, seperti didefinisikan oleh standar bangunan gedung umum yang diadopsi secara legal.

3.2.35
silika fum (silica fume)
silika non-kristal sangat halus yang dihasilkan dalam tungku arc elektrik sebagai produk sampingan dari produksi silikon elemental atau aloi (alloy) yang mengandung silikon.

3.2.36
slab di atas tanah (slab-on-ground)
slab yang didukung oleh tanah, yang tujuan utamanya adalah untuk mendukung beban yang bekerja dengan tumpuan pada tanah.
3.2.37
slump (slump)
ukuran konsistensi beton campuran segar, mortar, atau spesi (*stucco*) sama dengan penurunan yang diukur ke 6 mm terdekat dari spesimen yang dicetak seketika setelah pembongkaran kerucut *slump*.

3.2.38
tingkat (story)
porsi bangunan antara permukaan atas lantai dan permukaan atas lantai atau atap di atasnya.

3.2.39
kekuatan (strength)
istilah generik untuk kemampuan material dalam menahan regangan atau ruptur (*rupture*) yang ditimbulkan oleh gaya eksternal.

3.2.40
kekuatan, tekan beton (strength, concrete compressive)
tahapan maksimum spesimen beton yang diukur terhadap pembebanan tekan aksial; dinyatakan sebagai gaya per satuan luas penampang.

3.2.41
kekuatan, tekan beton yang ditetapkan (strength, specified concrete compressive)
tahapan specimen beton yang ditetapkan terhadap pembebanan tekan aksial yang digunakan dalam perhitungan desain dan sebagai kriteria untuk pemproporsian dan penerimaan material.

3.2.42
kekuatan, leleh (strength, yield)
tegangan rekayasa dimana material menunjukkan deviasi batasan spesifik dari proporsionalitas tegangan terhadap regangan.

3.2.43
tanah dasar (subgrade)
tanah yang dipersiapkan dan dipadatkan untuk mendukung struktur atau sistem perkerasan.

3.2.44
pengikat cetakan (tie, form)
koneksi mekanikal dalam kondisi tarik yang digunakan untuk mencegah cetakan beton terbuka akibat tekanan fluida beton segar.

3.2.45
rumah kota (townhouse)
unit hunian keluarga tunggal yang dibangun dalam kelompok tiga atau lebih unit yang menyatu dimana setiap unit menerus dari fondasi ke atap dan dengan ruang terbuka pada paling sedikit dua sisinya.

3.2.46
dinding penumpu beban (wall, load-bearing)
dinding yang didesain dan dibangun untuk memikul beban geser vertikal atau dalam bidang tambahan, atau keduanya.

3.2.47
tinggi dinding (wall height)
jarak dari sisi atas lantai bawah yang merangka atau slab ke sisi bawah lantai atas yang merangka atau slab.

3.2.48 rasio air-material sementisius (water-cementitious material ratio)
rasio masa air, tidak termasuk yang diserap oleh agregat, terhadap masa material sementisius dalam campuran, dinyatakan sebagai desimal.

3.2.49 rasio air-material sementisius (water-cementitious material ratio) disingkat sebagai w/cm.

4 Material

4.1 Beton

Material yang digunakan dalam beton perumahan harus memenuhi persyaratan Pasal 4.1.1 sampai 4.1.4.

4.1.1 Material sementisius

4.1.1.1 Semen harus memenuhi ASTM C150M, C595M, atau C1157M.

4.1.1.2 Abu terbang (fly ash)dan pozolan alam harus memenuhi ASTM C618.

4.1.1.3 Semen slag harus memenuhi ASTM C989.

4.1.1.4 Fum silika harus memenuhi ASTM C1240.

4.1.2 Agregat—Agregat harus memenuhi ASTM C33M atau C330M.

4.1.3 Air

4.1.3.1 Air yang digunakan sebagai air campuran dalam pembuatan beton harus memenuhi ASTM C1602M.

4.1.4 Bahan campuran tambahan (admixtures)

4.1.4.1 Bahan campuran tambahan pengisi udara (air-entaining) harus memenuhi ASTM C260.

4.1.4.2 Bahan campuran tambahan kimiawi harus memenuhi ASTM C494M. Bahan campuran tambahan untuk beton mengalir harus memenuhi ASTM C1017M.

4.1.4.3 Kalsium klorida harus memenuhi ASTM D98.

4.2 Tulangan

4.2.1 Tulangan berulir—Batang tulangan baja ulir harus memenuhi ASTM A615M, A706M, atau A996M. Kekuatan leleh tulangan yang ditetapkan tidak boleh kurang dari 280 MPa (lihat Tabel 1).

4.2.2 Tulangan kawat berlas
4.2.2.1 Tulangan kawat polos berlas, yang ditandai dengan huruf W, harus memenuhi ASTM A82M dan ASTM A185M.

4.2.2.2 Tulangan kawat berulir berlas, yang ditandai dengan huruf D, harus memenuhi ASTM A496M dan A497M.

4.2.3 *Baja prategang*—Stran baja prategang harus memenuhi ASTM A416M.

4.2.4 *Kondisi permukaan tulangan*—Pada saat beton dicor, batang tulangan ulir dan tulangan kawat las harus bebas dari material yang merusak pengembangan kekuatan lekat antara tulangan dan beton.

Tabel 1 - Informasi batang tulangan baja

<table>
<thead>
<tr>
<th>Ukuran batang tulangan, no.</th>
<th>Diameter nominal, mm</th>
<th>Luas nominal, mm²</th>
<th>Massa nominal, kg/m</th>
<th>30d₅₀, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9,5</td>
<td>71</td>
<td>0,560</td>
<td>290</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>130</td>
<td>0,994</td>
<td>390</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>200</td>
<td>1,552</td>
<td>480</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>285</td>
<td>2,235</td>
<td>570</td>
</tr>
</tbody>
</table>

CATATAN Kontaminan permukaan umum seperti serpihan beton, karat, oli pelepas lainnya telah ditemukan tidak bersifat merusak lekatant (Taber dkk. 2002; Suprenant dan Malisch 1996).

4.3 Cetakan

Cetakan harus menghasilkan struktur akhir yang memenuhi bentuk, garis, dan dimensi komponen struktur seperti disyaratkan oleh gambar desain dan spesifikasi.

CATATAN Merujuk pada ACI 347 dan ACI SP-4 untuk panduan mengenai desain dan konstruksi cetakan.

4.3.1 Cetakan harus menyediakan permukaan konsisten dan joint yang cukup kencang untuk mencegah kebocoran beton atau mortar melebihi penyimpangan yang ditetapkan untuk penyelesaian permukaan atau yang dapat dibersihkan dari permukaan beton yang terekpos.

4.3.2 Cetakan harus dibresing atau diikat bersama untuk mempertahankan posisi dan bentuk.

4.3.3 Cetakan dan perancahnya harus didesain sedemikian sehingga tidak merusak struktur yang dicor sebelumnya.

4.3.4 Desain cetakan harus menyertakan pertimbangan faktor - faktor berikut:

(a) Kecepatan dan metoda pengecoran beton;
(b) Beban konstruksi, termasuk beban vertikal, horizontal, dan kejut; dan
(c) Persyaratan cetakan untuk konstruksi busur, penutup (*blockouts*), tepian (*ledges*), dek lantai, atau elemen sejenisnya.

5 Persyaratan Beton

5.1 Persyaratan umum
Beton harus memenuhi persyaratan Pasal 5.2, 5.3, dan 5.4.

5.2 Properti beton

Kekuatan beton, *slump*, dan pengisian udara harus memenuhi Tabel 2 dan 3 berdasarkan pada tingkat ekspose ringan, sedang, atau berat terhadap pembekuan dan pencairan, seperti didefinisikan dalam (a) sampai (c) atau seperti ditetapkan oleh instansi setempat.

(a) Klasifikasi “berat” adalah bilamana kondisi cuaca mendorong atau mensyaratkan penggunaan bahan kimiaiwi pencair es atau bilamana terdapat potensi kelembapan yang menerus selama siklus pembekuan dan pencairan yang sering terjadi.

(b) Klasifikasi “sedang” adalah bilamana kondisi cuaca kadangkala membuat beton tersebut terhadap kelembapan dalam pembekuan dan pencairan, namun bahan kimiaiwi pencair es umumnya digunakan.

(c) Klasifikasi “ringan” adalah bilamana kondisi cuaca jarang atau tidak pernah membuat beton tersebut terhadap kelembapan dalam pembekuan dan pencairan.

CATATAN Dalam beberapa kasus, instansi setempat akan menetapkan kondisi ekspose. Durabilitas beton ditingkatkan dengan penggunaan pengisian udara untuk ketahanan terhadap pembekuan dan pencairan, penggunaan rasio *w/cm* kurang dari 0,45 untuk meningkatkan permeabilitas beton terhadap air dan bahan kimiaiwi yang merusak, dan perawatan yang tepat; Merujuk pada Pasal 6.5. Persyaratan dalam Tabel 2 tidak menyertakan batasan pada *w/cm* yang ditetapkan ditunjukan memberikan jaminan pencapaian *w/cm* rendah yang beralasan. Pengujian dapat membuktikan kekuatan tekan beton, namun sulit untuk menentukan secara akurat *w/cm* beton yang dihantarkan ke suatu proyek. Pasal 6.4 menekankan pentingnya beton yang dirawat untuk kondisi yang dijabarkan dalam Tabel 2. Pekerjaan beton yang dianggap sebagai Tipe 2, sebagai tambahan pada dinding fondasi, menyertakan dinding halaman, dinding penahan, dan elemen beton vertikal lainnya yang tidak tersesos terhadap saturasi atau garam pencair es.

5.2.1 Kekuatan—Kekuatan tekan 28 hari minimum yang ditetapkan *f′c* harus dipilih dari Tabel 2.

CATATAN Penyedia beton mempunyai tanggungjawab untuk menyediakan beton dengan kekuatan tekan yang ditetapkan oleh pembeli. Pembeli bisa meminta dokumentasi yang menunjukkan bahwa beton yang disediakan akan memenuhi probabilitas yang tinggi untuk memenuhi kekuatan yang ditetapkan. ACI 301M, Pasal 4.2.3 menyediakan panduan untuk pemroporsian campuran untuk memenuhi kekuatan tekan yang ditetapkan dan dokumentasi yang menunjukkan bahwa beton akan mempunyai probabilitas yang tinggi untuk memenuhi kekuatan yang ditetapkan. Penyedia beton harus menyediakan informasi tiket penghantaran sesuai dengan ASTM C94M, Pasal 13.1. Jika verifikasi kekuatan disyaratkan, silinder yang diambil oleh Teknisi Lapangan Bsertifikat selama waktu pengecoran harus diu di sesuai ASTM C39M. Piranti lunak maturitas dapat memberikan prediksi kekuatan tekan yang akurat yang didasarkan pada informasi yang disediakan oleh produsen beton dan profil temperatur beton selama proses hidrasi. Selanjutnya, jika kekuatan tekan beton dipertanyakan, pengujian lapangan non-destruktif dan contoh uji yang diambil dengan cara core sesuai dengan ASTM C42M dapat membuktikan kekuatan di tempat. Kekuatan beton dianggap memuaskan selama rata - rata sebarang tiga uji kekuatan berturut-turut setiap di atas *f′c* yang ditetapkan dan tidak ada uji kekuatan individu jatuh di bawah *f′c* yang ditetapkan dengan lebih dari 3,5 MPa.
Tabel 2 - Kekuatan tekan minimum yang ditetapkan (f'_c, MPa) saat 28 hari dan slump beton maksimum yang ditetapkan

<table>
<thead>
<tr>
<th>Tipe atau lokasi konstruksi beton</th>
<th>Ekspose terhadap pembekuan dan pencairan</th>
<th>Slump maksimum, mm*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ringan</td>
<td>Sedang</td>
</tr>
<tr>
<td>Tipe 1: Fondasi tapak dan slab di atas tanah interior, tidak termasuk slab lantai garasi</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Tipe 2: Dinding fondasi dan pekerjaan beton lainnya, kecuali yang disebutkan dalam Tipe 3</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>Tipe 3: Jalan masuk kendaraan (driveway), kerb, jalan setapak (walkway), ram (ramp), teras (patio), beranda (porch), undakan (step), dan tangga terekspos terhadap cuaca, dan slab lantai garasi</td>
<td>17</td>
<td>24</td>
</tr>
</tbody>
</table>

*Slump maksimum yang ditetapkan diizinkan ditingkatkan menjadi 230 mm dengan menggunakan bahan campuran tambahan pereduksi air rentang menengah (BCTPARM) atau bahan campuran tambahan pereduksi air rentang tinggi (BCTPART). Bila beton konsolidasi sendiri (BKS) digunakan, slump maksimum tidak ditetapkan; akan tetapi, aliran slump harus berada antara 600 dan 700 mm.

Tabel 3 - Kadar udara untuk beton Tipe 3 dengan ekspose sedang atau parah terhadap pembekuan dan pencairan

<table>
<thead>
<tr>
<th>Ukuran agregat maksimum nominal yang ditetapkan, mm</th>
<th>Kadar udara, % (toleransi ±1,5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sedang</td>
</tr>
<tr>
<td>9,5</td>
<td>6,0</td>
</tr>
<tr>
<td>12,5</td>
<td>5,5</td>
</tr>
<tr>
<td>19</td>
<td>5,0</td>
</tr>
<tr>
<td>25</td>
<td>4,5</td>
</tr>
<tr>
<td>37,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

5.2.2 Slump—Slump beton desain maksimum yang ditetapkan harus dipilih dari Tabel 2.

CATATAN Tipe dan kinerja bahan campuran tambahan pereduksi air dipilih berdasarkan pada aplikasi yang dikehendaki dan menyertakan kedua BCTPART dan BCTPARM. Bahan campuran tambahan pereduksi air menghasilkan reduksi air yang tinggi sampai sedang dalam campuran sementara mempertahankan kemampuan alir yang lebih besar tanpa mengakibatkan penghambatan pengikatan pengikatan sebelum waktu atau pengisian udara. Bila menggunakan BCTPART yang memenuhi ASTM C494M atau C1017M, slump maksimum yang ditetapkan dapat ditingkatkan dari yang tertera dalam Tabel 2 asalkan agregat dalam beton tidak segregasi dari pasta dalam campuran yang dihasilkan. Tetapkan maksimum sebesar 230 mm bila perlu. Jika verifikasi slump disyaratkan, pengujian slump harus sesuai dengan ASTM C143M. Batasan slump tradisional tidak cocok untuk beton BKS (Beton Konsolidasi Sendiri), dimana konsistensi beton diukur dalam hal aliran slump sesuai dengan ASTM C1611M. Umumnya, aliran slump dalam rentang sebesar 600 hingga 700 mm digunakan untuk beton perumahan. Merujuk pada ACI 237R.

5.2.3 Pengisian udara—Beton di daerah dengan probabilitas cuaca sedang atau parah dan terekspos terhadap cuaca harus disi udara sesuai dengan Tabel 3.

CATATAN Aspek penting pengisian udara adalah distribusi gelembung udara yang seragam untuk menyediakan tahanan terhadap kerusakan akibat pembekuan dan pencairan (bilamana ada atau terjadi). Jika dokumen konstruksi mensyaratkan verifikasi pengisian udara, kontraktor harus menyediakan pengujian sesuai dengan ASTM C231M atau ASTM C173M sebagaimana cocok pada adukan pertama beton yang dihantar ke lokasi. Jika beton gagal untuk memenuhi persyaratan pengisian udara, langkah-langkah harus diambil untuk mengoreksi kadar udara pada adukan.
5.2.4 *Ukuran agregat kasar*—Ukuran agregat kasar maksimum nominal tidak boleh melebihi yang terkecil dari berikut ini:

(a) 1/5 tebal dinding minimum;

(b) 1/3 dimensi penampang komponen struktur; atau

(c) 3/4 jarak bersih minimum yang ditetapkan antara batang tulangan atau selimut beton bersih.

CATATAN Pembatasan ini tidak berlaku jika kelecakan dan metoda konsolidasi memudahkan pengecoran beton tanpasarang tawonatau rongga.

5.2.5 *Ekspose sulfat beton*

5.2.5.1 Beton yang kontak langsung dengan tanah alami yang mengandung sulfat yang dapat larut dalam air seperti ditetapkan menurut Pasal 5.2.5.2 harus memenuhi Pasal 5.2.5.1.1 sampai 5.2.5.1.3:

5.2.5.1.1 Untuk konsentrasi sulfat lebih besar dari atau sama dengan 0,1% tetapi kurang dari 0,2% berdasarkan berat, beton harus dibuat dengan semen Tipe II ASTM C150M (SNI 2049), atau semen hidraulis ASTM C595M atau C1157M yang sesuai untuk semen hidraulis tahan sulfat sedang (MS).

5.2.5.1.2 Untuk konsentrasi sulfat sama dengan atau lebih besar dari 0,2% berdasarkan berat, beton harus dibuat dengan semen Tipe V ASTM C150M atau semen hidraulis ASTM C595M atau C1157M yang sesuai untuk semen hidraulis tahan sulfat tinggi (HS) dan harus mempunyai kekuatan tekan minimum yang ditetapkan sebesar 21 MPa saat 28 hari atau lebih besar seperti yang disyaratkan dalam Tabel 2.

5.2.5.1.3 Kombinasi alternatif semen dan material sementisius pelengkap diziikankan dengan catatan layan atau hasil uji yang dapat diterima. Material sesuai dengan Pasal 4.1.1 Standar ini.

CATATAN Untuk informasi tentang proporsi beton yang terekspos terhadap level sulfat yang meningkat, merujuk pada ACI 201.2R.

5.2.5.2 Konsentrasi sulfat tanah yang dapat larut dalam air harus ditetapkan dengan metoda pengujian atau berdasarkan data riwayat yang diterima oleh instansi terkait.

CATATAN Pengujian untuk sulfat tanah bisa memberikan hasil yang berbeda untuk contoh uji tanah yang sama, terutama tergantung pada rasio ekstraksi pengujian yang ditetapkan, yaitu berat air dibagi dengan berat tanah. Hal ini terutama berlaku untuk sulfa yang dominan dalam bentuk gipsum. Jadinya, lebih diinginkan bahwa pengujian mempunyai riwayat penggunaan yang sukses dalam daerah geografi suatu proyek, serta diketahui dan disetujui oleh instansi setempat. Metoda pengujian dapat melibatkan metoda USBR 1973; California DOT Test 417; dan ASTM C1580.

5.3 *Selimut beton*

Selimut bersih untuk tulangan pada semua elemen beton tidak boleh kurang dari yang disyaratkan oleh Pasal 5.3.1, 5.3.2, dan 5.3.3. Persyaratan tersebut tidak berlaku untuk slab di atas tanah, kecuali untuk fondasi tapak dengan slab yang dipertebal. Selimut beton untuk
slab di atas tanah harus sesuai dengan Pasal 10.6.1. Selimut beton harus mempunyai toleransi sebesar –10 mm.

5.3.1 Beton yang dicetak di atas tanah: 75 mm.

CATATAN Dalam beberapa contoh, adalah menguntungkan atau perlu untuk satu sisi atau lebih pengecoran beton yang dicetak terdiri dari permukaan tanah galian. Subpasal ini merujuk pada contoh ini dimana operasi pengecoran menghasilkan beton yang berkontak langsung dengan tanah.

5.3.2 Beton yang terekpos tanah atau cuaca:

(a) Batang tulangan No. 16, kawat W31 atau D31 dan yang lebih kecil: 40 mm; dan

(b) No. 19 dan yang lebih besar: 50 mm.

5.3.3 Beton yang tidak terekpos tanah atau cuaca: 20 mm.

5.4 Kalsium klorida

5.4.1 Bila beton bertulang dalam kondisi kering atau terlindung dari kelembapan dalam masa layannya, atau untuk beton polos dalam semua kondisi layan, kalsium klorida yang ditambahkan pada campuran tidak boleh melebihi 2,0% berdasarkan berat material sementisius. Untuk beton bertulang dalam kondisi layan lainnya, kalsium klorida yang ditambahkan pada campuran tidak boleh melebihi 0,50% berdasarkan berat material sementisius.

Penggunaan kalsium klorida untuk aplikasi ini dalam konstruksi cuaca dingin adalah umum dan belum merupakan perhatian untuk keselamatan jiwa atau kegagalan terkait korosi dari tipe komponen struktur beton ini.

5.4.2 Kalsium klorida sebagai bahan campuran tambahan, atau bahan campuran tambahan yang mengandung ion klorida yang ditambahkan secara sengaja, tidak boleh digunakan dalam beton yang mengandung baja prategang, aluminum, atau metal lainnya.

CATATAN Persyaratan ini juga berlaku untuk beton, grout, atau keduanya, yang berkontak langsung dengan baja pasca tarik.

6 Produksi dan pengecoran beton

6.1 Beton
6.1.1 Beton siap pakai (ready mixed concrete) harus dipesan, diaduk, dicampur, dan diangkut sesuai dengan ASTM C94M.

CATATAN Pemakai harus merujuk pada ACI 304R untuk rekomendasi tambahan untuk pengukuran, pencampuran, pengangkutan, dan pengecoran beton.

6.1.2 Beton yang diproduksi dengan pengadukan volumetrik dan pencampuran menerus harus diaduk dan dicampur sesuai dengan ASTM C685M.

CATATAN Pemakai harus merujuk pada ACI 304.6R untuk rekomendasi tambahan untuk pengadukan volumetrik dan pencampuran beton yang menerus.

6.2 Pengecoran

6.2.1 Properti beton yang ditetapkan sesuai dengan Pasal 5.2.2 dan 5.2.3 harus disediakan di titik pengiriman.

CATATAN Normalnya, penuangan beton selesai dalam 90 menit setelah pemberian air pada semen. Pengalaman telah menunjukkan bahwa waktu penuangan 90 menit dapat dilampaui sementara mempertahankan properti beton yang ditetapkan selama operasi pengecoran.

ASTM C94M membolehkan untuk penambahan air satu kali di lokasi kerja sampai dengan w/cm maksimum yang diperbolehkan. Alternatifnya, penambahan BCTPART atau BCTPARM di lokasi kerja bisa digunakan untuk meningkatkan slump beton alir (flowing concrete) bilamana jatuh di bawah slump yang dikehendaki. Setelah BCTPART atau BCTPARM ditambahkan pada beton di lokasi untuk mencapai beton alir, jangan menambahkan air pada beton.

6.2.2 Beton harus dicor pada posisinya dengan metoda yang mempertahankan properti yang ditetapkan dalam Pasal 5.2.2 dan 5.2.3.

6.2.3 Beton yang sebagian mengeras atau terkontaminasi oleh material asing tidak boleh dicor.

6.2.4 Area yang disiapkan untuk pengecoran beton harus bebas dari puing-puign dan kontaminan. Area tersebut harus bebas kelebihan air yang ada pada dasar fondasi tapak yang akan digantikan oleh beton selama pengecoran.

CATATAN Merujuk pada Pasal 6.6 untuk pengecoran beton pada material yang membeku.

6.2.5 Beton harus dikonsolidasikan dengan cara yang sesuai selama pengecoran dan harus dituangkan hingga menutup benda-benda yang dibenamkan di dalamnya termasuk tulangan dan sudut - sudut cetakan.

CATATAN Rekomendasi untuk konsolidasi beton perumahan diberikan secara detail dalam ACI 332.1R dan untuk semua cetakan beton dalam ACI 309R. Biasanya, beton konsolidasi sendiri dan beton dengan slump lebih besar dari 175 mm akibat penambahan BCTPART tidak divibrasi; akan tetapi, vibrasi minimal bisa dibutuhkan untuk meminimumkan cacat permukaan.

6.3 Pembongkaran cetakan

Cetakan harus dibongkar dengan cara yang tidak mengganggu keamanan dan kemampuan layan struktur. Beton yang terekspos akibat pembongkaran cetakan harus mempunyai kekuatan cukup agar tidak rusak oleh operasi pembongkaran.

6.4 Penyelesaian
Kerusakan permukaan hingga tulangan terekspos harus diperbaiki. Kerusakan permukaan lebih besar dari 0,03 m² dengan kedalaman lebih besar dari 13 mm harus diperbaiki.

CATATAN Merujuk pada ACI 332.1R untuk panduan perbaikan.

6.5 Perawatan

Setelah pengecoran, beton harus dilindungi untuk mempertahankan kelembapan dan suhu yang tepat. Proteksi harus memastikan bahwa penguapan air yang berlebihan tidak merusak kekuatan yang disyaratkan atau kemampuan layan elemen. Pasal 6.6 dan 6.7 masing-masing harus diikuti untuk kondisi cuaca dingin dan panas.

CATATAN Tujuan perawatan adalah untuk mereduksi kehilangan kelembaban dari beton dan bilamana diperlukan, untuk menyediakan kelembaban tambahan dan menjaga temperatur beton yang dikehendaki untuk perioda waktu yang cukup untuk membolehkan beton untuk mencapai kekuatan kritis awal. Metode yang umum mencakup lembaran goji basah (wet burlap), lembaran plastik (polyethylene sheets), selimut, diuapi (foggers), dan kompon perawatan. Referensi untuk metode ini dan teknik perawatan lainnya dapat ditemukan dalam ACI 332.1R untuk panduan perbaikan dan ACI 308R.

6.6 Cuaca dingin

6.6.1 Selama kondisi suhu lingkungan yang diantisipasi sebesar 2 °C atau kurang, suhu beton harus dipertahankan di atas keadaan beku sampai kekuatan tekan beton mencapai 3,5 MPa.

6.6.2 Material beton, tulangan, cetakan, dan setiap tanah yang berhubungan langsung dengan beton harus bebas dari es, salju, dan kristal es.

6.6.3 Material beku atau material yang mengandung es tidak boleh digunakan.

6.7 Cuaca panas

Selama cuaca panas, perhatian harus diberikan pada bahan - bahan dasar,metode produksi, penanganan, pengiriman, pengecoran, proteski, dan perawatan beton untuk mencegah suhu beton atau penguapanyang berlebihan yang dapat merusak kekuatan yang disyaratkan atau kemampuan layan kompon struktur atau struktur.

CATATAN Kondisi cuaca panas dapat merusak kekuatan tekan beton ultimit atau kemampuan layan elemen beton jika praktek pembetonan cuaca panas yang tepat tidak dikuti. Merujuk pada ACI 305R untuk informasi mengenai praktek pembetonan cuaca panas.

7 Fondasi tapak

7.1 Umum
Desain dan konstruksi fondasi tapak setempat dan fondasi tapak dinding harus sesuai dengan Pasal 7.2 dan 7.3.

CATATAN Fondasi tapak disediakan di bawah kolom, juga disebut pier, dan dinding bilamana perhitungan menunjukkan bahwa pengabaian fondasi tapak akan mengakibatkan tekanan tanah yang melebihi tekanan tumpu tanah yang diperbolehkan. Fondasi tapak juga disediakan untuk memudahkan pemasangan cetakan. Tekanan tumpu tanah bisa dirujuk dalam standar bangunan gedung umum atau diperoleh dengan mengadakan investigasi geoteknik bila timbunan atau bila tidak maka kondisi tanah tak lazim akan ditemui.

7.2 Desain

Untuk fondasi tapak yang didesain sesuai Standar ini, parameter dalam Tabel 4 tidak boleh dilampaui.

Tabel 4 - Nilai maksimum yang ditetapkan untuk tabel preskriptif dalam Pasal 7

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Batasan maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umum</td>
<td>Dimensi denah</td>
</tr>
<tr>
<td></td>
<td>Beban salju tanah</td>
</tr>
<tr>
<td>Fondasi</td>
<td>Densitas fluida ekuivalen dari tanah</td>
</tr>
<tr>
<td></td>
<td>Nilai daya dukung tanah presumptif</td>
</tr>
<tr>
<td>Dinding</td>
<td>Tinggi dinding tak tertumpu, per tingkat</td>
</tr>
<tr>
<td></td>
<td>Tinggi timbunan tak seimbang</td>
</tr>
<tr>
<td>Beban lantai</td>
<td>Beban mati lantai</td>
</tr>
<tr>
<td></td>
<td>Beban hidup lantai pertama</td>
</tr>
<tr>
<td></td>
<td>Beban hidup lantai kedua dan ketiga</td>
</tr>
<tr>
<td>Beban atap</td>
<td>Beban mati atap dan langit-langit</td>
</tr>
<tr>
<td></td>
<td>Beban salju atap</td>
</tr>
<tr>
<td></td>
<td>Beban hidup attic</td>
</tr>
<tr>
<td>Bentang bersih maksimum</td>
<td>Bentang bersih lantai (tak tertumpu)</td>
</tr>
<tr>
<td></td>
<td>Bentang bersih atap (tak tertumpu)</td>
</tr>
</tbody>
</table>

7.2.1 Fondasi tapak dinding

7.2.1.1 Lebar fondasi tapak dinding tidak boleh kurang dari dimensi yang ditentukan dalam Tabel 5 atau tebal dinding yang didukung ditambah 100 mm, diambil yang lebih besar.

CATATAN Lebar fondasi tapak perlu memroyeksi minimum sebesar 50 mm pada setiap sisi dinding untuk mendukung sistem cetakan. Proyeksi lebar fondasi tapak diukur dari muka beton ke tepi fondasi tapak.

7.2.1.2 Tebal fondasi tapak dinding tidak boleh kurang dari yang terbesar antara 150 mm atau setengah lebar fondasi tapak dikurangi tebal dinding yang didukung.
Tabel 5 - Lebar minimum fondasi tapak dinding yang ditetapkan, mm†

<table>
<thead>
<tr>
<th>Konstruksi rangka kayu konvensional (di atas tanah)</th>
<th>Jumlah lantai di atas tanah‡</th>
<th>Daya dukung tanah yang diizinkan, kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satu lantai</td>
<td>400 300 250 200 175 150</td>
</tr>
<tr>
<td></td>
<td>Dua lantai</td>
<td>480 380 300 250 200 175</td>
</tr>
<tr>
<td></td>
<td>Tiga lantai</td>
<td>560 430 350 280 250 230</td>
</tr>
<tr>
<td>Pelapis (veneer) bata 100 mm di atas rangka kayu; unit batako beton berlubang 200 mm (di atas tanah)</td>
<td>Satu lantai</td>
<td>480 380 300 250 200 175</td>
</tr>
<tr>
<td></td>
<td>Dua lantai</td>
<td>635 480 380 330 280 250</td>
</tr>
<tr>
<td></td>
<td>Tiga lantai</td>
<td>790 580 480 400 330 300</td>
</tr>
<tr>
<td>Unit batako beton yang digrouting 200 mm</td>
<td>Satu lantai</td>
<td>560 430 330 280 250 230</td>
</tr>
<tr>
<td></td>
<td>Dua lantai</td>
<td>790 580 430 280 250 230</td>
</tr>
<tr>
<td></td>
<td>Tiga lantai</td>
<td>1000 0 750 600 500 430 380</td>
</tr>
</tbody>
</table>

*Kekuatan beton minimum yang diterapkan fc′ harus sebesar 17 MPa.
†Lebar fondasi tapak kurang dari 300 mm hanya berlaku pada dinding yang memenuhi semua kriteria berikut: a) ketinggian 1,2 m atau kurang; b) Kategori Desain Seismik C atau kurang; dan c) fondasi tapak dinding yang menumpu garasi, beranda, atau beban atas satu tingkat.
‡Tabel termasuk fondasi (sebagai contoh, satu tingkat menyertakan tingkat di atas tanah dan fondasi).

7.2.2 Fondasi tapak setempat — Dimensi fondasi tapak setempat tidak boleh kurang dari dimensi yang ditentukan dalam Tabel 6.

Tabel 6 - Ukuran dan tulangan minimum yang ditetapkan untuk fondasi tapak terpisah, mm†‡

<table>
<thead>
<tr>
<th>Luas tributari</th>
<th>Daya dukung tanah yang diizinkan, kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Fondasi tapak yang menumpu beban atapi (900 x 900 x 200) mm dengan 3 tulangan No. 13 tiap arah</td>
<td>(750 x 750 x 200) mm dengan 3 tulangan No. 13 tiap arah</td>
</tr>
<tr>
<td>Fondasi tapak yang menumpu atas dan satu lantai (1200 x 1200 x 250) mm dengan 3 tulangan No. 13 tiap arah</td>
<td>(1200 x 1200 x 250) mm dengan 3 tulangan No. 13 tiap arah</td>
</tr>
<tr>
<td>Fondasi tapak yang menumpu atas dan dua lantai (1500 x 1500 x 300) mm dengan 4 tulangan No. 16 tiap arah</td>
<td>(1500 x 1500 x 300) mm dengan 4 tulangan No. 16 tiap arah</td>
</tr>
</tbody>
</table>

*Kekuatan beton minimum yang diterapkan fc′ harus sebesar 17 MPa.
†Kekuatan leleh minimum yang diterapkan fy′ harus sebesar 275 MPa.
‡Luas tributari maksimum adalah 6,1 x 9,8 m (berdasarkan beban ditetapkan dalam Tabel 4).

CATATAN Luas tributari yang didukung oleh fondasi tapak setempat ditunjukkan dalam Gambar 1. Fondasi tapak setempat juga disebut pier atau fondasi tapak kolom.
7.2.3 **Permukaan fondasi tapak**—Permukaan dasar fondasi tapak tidak boleh melebihi kemiringan 1 vertikal dalam 10 horizontal. Permukaan atas fondasi tapak harus rata dalam toleransi yang ditetapkan.

CATATAN Toleransi umum untuk beton perumahan dapat ditemukan dalam SNI 2847:2013 “Persyaratan beton struktural untuk bangunan gedung”.

7.2.4 **Fondasi tapak tidak ditumpu secara menerus**—Fondasi tapak yang tidak ditumpu secara menerus harus dibangun sesuai dengan Pasal 7.2.4.1, 7.2.4.2, atau 7.2.4.3.

CATATAN Kondisi fondasi tapak dinding yang tidak ditumpu secara menerus, biasanya dijumpai di sekitar sanitari atau pipa air, di mana tanah yang kurang dipadatkan mengalami penurunan di bawah permukaan dasar fondasi tapak. Urutan pengisi harus dipadatkan dengan penumbukan hingga level permukaan dasar fondasi tapak untuk memperoleh tumpuan yang memadai dan meminimalkan kemungkinan penurunan yang merusak.

7.2.4.1 Bila penampang fondasi tapak dinding tak tertumpu tidak melebihi bentang 900 mm, minimum sebanyak dua batang tulangan No. 13 harus ditempatkan di dasar fondasi tapak dan diteruskan paling sedikit 450 mm ke dalam penampang yang tertumpu, pada kedua sisinya. Batang tulangan harus mempunyai selimut minimum yang ditetapkan sebesar 75 mmdari tepi dan dasar fondasi tapak.

7.2.4.2 Parit di bawah fondasi tapak harus ditimbun untuk mencegah pergerakan tanah di dekatnya dan dipadatkan agar sama dengan kondisi tanah di dekatnya.

7.2.4.3 Bentang fondasi tapak dinding tak tertumpu yang melebihi 900 mm adalah di luar lingkup Standar ini.

7.2.5 **Fondasi tapak dinding tak menerus**—Fondasi tapak dinding diizinkan dihentikan di perubahan elevasi mendadak menurut Pasal 7.2.5.1 atau 7.2.5.2.

7.2.5.1 Diskontinuitas horizontal maksimum sebesar 1,2 m diizinkan oleh Standar ini dan harus memenuhi persyaratan tulangan dari Pasal 8.2.9.

7.2.5.2 Diskontinuitas fondasi tapak horizontal lebih besar dari 1,2 m di luar lingkup Standar ini.

7.2.6 Pengangkuran fondasi dalam Kategori Desain Seismik (KDS) C, D₀, D₁, dan D₂—Persyaratan berikut harus diterapkan pada struktur rangka ringan kayu dalam KDS D₀, D₁, dan D₂ dalam KDS C seperti didefinisikan dalam Pasal 1.3.1 Standar ini:

(a) Pelat waser (washer) dengan ukuran minimum 5 x 50 x 50 mm harus disediakan untuk semua baut angkur antara pelat ambang (sill plate) dan mur. Waser yang dipotong dengan ukuran yang tepat diizinkan untuk baut angkur pada lajur dinding yang tidak mengandung panel dinding yang dibreising;

(b) Pelat dinding interior yang dibreising harus mempunyai baut angkur yang dipasang berjarak 1,8 m dari pusat ke pusat dan ditempatkan dalam 300 mm dari tepi setiap penampang pelat bila ditumpu di atas fondasi menerus;

(c) Pelat tunggal dinding penumpu interior harus mempunyai baut angkur yang dipasang berjarak 1,8 m dari pusat ke pusat dan ditempatkan dalam 300 mm dari tepi setiap penampang pelat bila ditumpu di atas fondasi menerus; dan

(d) Spasi baut angkur maksimum yang ditetapkan harus sebesar 1,2 m untuk bangunan gedung dengan ketinggian lebih dari dua tingkat.
Gambar 2 - Fondasi tapak dinding tak menerus dan tulangan dinding tambahan.

7.2.7 Tulangan longitudinal pada fondasi tapak menerus dalam KDS D_0, D_1, dan D_2

7.2.7.1 Fondasi tapak menerus dengan dinding tangkai (stem wall)—Fondasi tapak dengan dinding tangkai harus berisi satu batang tulangan longitudinal No. 13 berjarak 300 mm yang dipasang dari sisi atas dinding tangkai dan satu batang tulangan longitudinal No. 13 yang dipasang sejarak 75 sampai 100 mm dari dasar fondasi tapak.

7.2.7.2 Slab di atas tanah dengan fondasi tapak dipertebal (turned-down footing)

(a) Jika terdapat joint konstruksi horizontal di antara tebal slab dan tebal fondasi tapak, tulangan harus berisi minimum satu batang tulangan longitudinal No. 13 yang ditempatkan di dekat sisi atas dan bawah, dan batang tulangan vertikal No. 10 atau lebih besar dengan jarak pusat ke pusat maksimum sebesar 1,2 m melewati joint. Batang tulangan vertikal harus mempunyai selimut beton 75 mm di sisi bawah dan samping, dan harus memegang batang tulangan longitudinal atas dan bawah dengan kait standar di setiap ujungnya. Kait standar harus memenuhi SNI 2847:2013, Pasal 12.5.
(b) Jika slab dan fondasi tapak dicetak secara monolit, fondasi tapak harus ditulangi dengan salah satu berikut ini:

1) Minimum dua batang tulangan longitudinal No. 13, satu ditempatkan di sisi atas, dan satu ditempatkan di sisi bawah fondasi tapak;
2) Minimum dua batang tulangan longitudinal No. 13 ditempatkan di sepertiga tengah tinggi fondasi tapak; dan
3) Minimum satu batang tulangan longitudinal No. 16 ditempatkan di sepertiga tengah tinggi fondasi tapak;

Merujuk pada Pasal 7.2.7.2 dan Gambar 3.

Gambar 3 - Fondasi tapak slab dipertebal dengan joint konstruksi horizontal.

7.3 Konstruksi

7.3.1 Fondasi tapak yang tidak dicetak—Penggalian untuk fondasi tapak yang tidak dicetak harus tetap stabil sebelum dan selama pengecoran beton.

CATATAN Fondasi tapak yang tidak dicetak sering dipergunakan dalam kasus kedalaman beku yang dangkal atau untuk dinding penumpu interior. Fondasi tapak dapat dicor menyatu dengan slab.

Gambar 4 - Fondasi tapak slab eksterior dipertebal tanpa cetakan.
7.3.2 Fondasi tapak yang tidak dicetak — Cetakan sisi harus dibuat agar dimensi dan kemiringannya tetap terjaga sebelum dan selama pengecoran beton.

7.3.3 Penyelesaian — Permukaan atas fondasi tapak harus dibongkar (struck off level) atau dipersiapkan untuk jalur kunci (keyway) atau joint pasak seperti disyaratkan dalam Pasal 7.3.4.

7.3.4 Joint dinding ke fondasi tapak — Semua joint dinding ke fondasi tapak harus sesuai dengan Tabel 7.4.

Tabel 7.4—Desain joint dinding ke fondasi tapak yang disyaratkan

<table>
<thead>
<tr>
<th>Kategori Desain Seismik (KDS)</th>
<th>Tinggi timbunan tak seimbang</th>
<th>Joint yang dapat diterima</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C ≤ 1,2 m</td>
<td>> 1,2 m</td>
<td>7.3.4.1 atau 7.3.4.2</td>
</tr>
<tr>
<td>D0, D1, D2, E</td>
<td>Semua</td>
<td>7.3.4.1</td>
</tr>
</tbody>
</table>

Joint konstruksi bersih merujuk pada muka kontak antara fondasi tapak dan dinding fondasi, tanpa puing-puing dan tanpa karakteristik permukaan yang dikerjakan dengan alat; merujuk pada Gambar S7.4.

CATATAN Merujuk pada Gambar 6.

7.3.4.1 Pasak No. 13 harus menerus paling sedikit 36d₀ ke dalam dinding dan 150 mm ke dalam fondasi tapak dengan jarak dari pusat ke pusat maximum sebesar 600 mm sepanjang fondasi tapak. Untuk memudahkan penempatannya sebelum pengecoran beton, pasak vertikal diizinkan dipasangkan ke dalam tanah di dasar fondasi tapak.

CATATAN Merujuk pada Gambar 6.

Gambar 5 - Fondasi tapak interior dipertebal tanpa cetakan.

Gambar 6 - Joint dinding ke fondasi tapak dengan pasak.
7.3.4.2 Jalur kunci (keyway) menerus harus dicetak dalam fondasi tapak yang terletak di sepertiga tengah dinding. Jalur kunci harus mempunyai kedalaman dan lebar minimum yang ditetapkan sebesar 40 mm di sisi atas.

CATATAN Merujuk pada Gambar 7.

Gambar 7 - Joint dinding ke fondasi tapak dengan jalur kunci.

8 Dinding Fondasi

8.1 Umum

8.1.1 Ketentuan pasal ini harus diaplikasikan pada dinding fondasi bangunan gedung dalam lingkup Standar ini.

8.1.2 Tumpuan lateral diperlukan di atas dan dasar dinding. Joint dinding ke fondasi tapak yang memenuhi Pasal 7.3.4 telah memenuhi persyaratan tumpuan lateral di bagian dasar. Joint sistem tumpuan lateral ke atas dinding harus memenuhi Pasal 8.2.5.1. Desain tumpuan lateral atas adalah di luar lingkup Standar ini.

CATATAN Merujuk Pasal 8.2 untuk desain dinding fondasi.

8.1.3 Dinding dengan tebal perlu lebih besar dari 300 mm adalah di luar lingkup Standar ini.

CATATAN Standar mengizinkan penampang dinding dengan ketebalan lebih dari 300 mm untuk tujuan non-struktural, seperti untuk memudahkan pembuatan cetakan.

8.1.4 Tebal dinding tidak boleh kurang dari nilai minimum yang ditetapkan dalam Pasal 8.2.1.2, kecuali dilizinkan oleh Pasal 8.2.4.

8.1.5 Dinding dengan ketinggian tak tertumpu lebih dari 30 m adalah di luar lingkup Standar ini.
CATATAN Dinding tanpa penumpu dengan ketinggian lebih dari 30 m memerlukan pertimbangan desain yang tidak dicakup dalam tabel dan persamaan-persamaan dalam Standar ini.

8.1.6 Penentuan tekanan fluida ekuivalen timbunan terhadap dinding fondasi adalah di luar lingkup Standar ini.

CATATAN Pengguna dapat merujuk ke ASCE/SEI 7, seorang ahli geoteknik, atau Standar Bangunan untuk mendapatkan tekanan fluida ekuivalen pada timbunan.

8.2 Desain

8.2.1 Desain beton polos

8.2.1.1 Dinding fondasi yang memenuhi persyaratan Pasal 8.2.1.2 dapat didesain menggunakan Pers. (8-1)

\[M_n = 0,625\lambda \sqrt{f'_c S_m} \]

(8-1)

CATATAN Dalam SNI 2847:2013, Pasal 22, kekuatan momen nominal pada suatu penampang, \(M_n \), dari beton polos adalah \(0,42\lambda \sqrt{f'_c S_m} \). Nilai ini lebih kecil dibandingkan momen retak \(M_{cr} \), yang dihitung berdasarkan nilai modulus runtuh beton, \(0,625\sqrt{f'_c} \). Modulus runtuh digunakan untuk menghitung \(M_n \) dari beton polos. Perubahan ini didasarkan pada rekam jejak kinerja beton polos yang memuaskan pada dinding fondasi. Nilai \(M_n \) sebesar \(0,42\lambda \sqrt{f'_c S_m} \) tetap berlaku untuk dinding fondasi yang dibangun menggunakan metoda yang tidak didasarkan rekam jejak kinerja yang memuaskan pada industri perumahan.

Ketentuan ini hanya berlaku untuk penggunaan Pers. (8-1). Ketentuan desain lainnya dalam pasal -pasal yang berkaitan dengan SNI 2847:2013 juga harus dipenuhi; seperti, kombinasi pembebanan dalam Pasal 9.2 dan faktor reduksi kekuatan dalam Pasal 9.3.5 yang harus dipergunakan.

8.2.1.2 Dinding fondasi yang didesain berdasarkan Pasal 8.2.1.1 harus memenuhi kondisi berikut:

(a) Tebal dinding seragam minimum yang ditetapkan adalah 190 mm, tebal minimum yang ditetapkan sebesar 140 mm dapat dipergunakan bila tinggi dinding tidak melebihi 1,2 m dan timbunan tak seimbang tidak melebihi 600 mm; dan
(b) Persyaratan Pasal 8.2.3 sampai 8.2.10.

CATATAN Ketentuan tebal minimum yang ditetapkan sebesar 190 mm untuk dinding fondasi beton polos disyaratkan untuk menggunakan Pers. (8-1) dalam perhitungan kuat lentur.

8.2.1.3 Dinding beton polos yang berlokasi dalam Kategori Desain Seismik D₀, D₁, dan D₂ harus memenuhi berikut ini:

(a) Dinding beton polos yang menumpu timbunan tak seimbang lebih dari 1,2 m atau yang tinggi dindingnya melebihi 2,4 m harus dibangun sesuai dengan Tabel A.1 sampai A.10. Tabel A.1 sampai A.10 mengizinkan digunakannya dinding beton polos, asalkan dipasangi tulangan vertikal No. 13 berjarak tidak melebihi 1,2 m; dan

(b) Tebal minimum untuk dinding beton polos harus sebesar 190 mm, ketebalan 150 mm boleh dipergunakan asalkan tinggi maksimum dinding adalah 1,4 m.

CATATAN Dinding - dinding yang tidak ditumpu dengan ketinggian lebih dari 3 m adalah di luar lingkup Standar ini sebagaimana didefinisikan dalam asumsi umum Pasal 8.2.3.

8.2.2 Desain beton bertulang

8.2.2.1 Dinding fondasi yang memenuhi persyaratan Pasal 8.2.2.2 boleh didesain menggunakan ketentuan SNI 2847:2013 dengan modifikasi (a) dan (b):

(a) Pasal 14.3 tidak termasuk; dan

(b) Pasal 22.6.6 tidak termasuk.

8.2.2.2 Tulangan vertikal dinding fondasi harus memenuhi Pasal 8.2.1.2 dan butir (a) sampai (h):

(a) Luas minimum tulangan dinding vertikal harus sebesar 140 mm² per meter lari dinding;

(b) Spasi maksimum tulangan dinding vertikal yang ditetapkan harus sebesar 1,2 m;

(c) Spasi minimum tulangan dinding vertikal harus sebesar 0,5 kali tebal dinding;

(d) Tulangan vertikal harus ditempatkan dalam satu lapis, kecuali jika ditunjukkan yang lain dalam dokumen konstruksi;

(e) Tulangan vertikal harus ditempatkan dengan selimut beton dari muka tarik sesuai dengan Pasal 5.3, kecuali jika ditunjukkan yang lain dalam dokumen konstruksi;

(f) Tulangan vertikal harus ditempatkan lebih dekat ke muka tarik dinding dan diikat pada tulangan horizontal dimana tulangan vertikal dan tulangan horizontal bersilangan;

(g) Panjang lewatan tulangan tidak boleh kurang dari 600 mm; dan

(h) Tulangan harus memenuhi Pasal 4.2.1 atau 4.2.2.

CATATAN Luas minimum tulangan vertikal dinding adalah sebesar tulangan No. 13 berjarak 900 mm dari pusat ke pusat. Tulangan minimum ini dan jarak tulangan maksimum sebesar 1,2 m ini didasarkan riwayat kinerja yang memuaskan. Permukaan tarik dinding adalah permukaan yang berlawanan dengan sisi dinding yang menerima beban lateral (tanah). Merujuk pada Gambar 8.
8.2.3 *Tabel desain dinding*—Dinding fondasi dapat dibangun menggunakan informasi desain pada Lampiran A dan Tabel A.1 sampai A.10, yang memenuhi Pasal 8.2.1 dan 8.2.2.

8.2.4 *Reduksi ketebalan dinding*—Tebal sisi atas dinding fondasi boleh direduksi. Tinggi penampang dengan ketebalan yang direduksi tidak boleh melebihi 600 mm. Penampang ketebalan yang direduksi harus memenuhi (a) dan (b):

(a) Tebal dinding yang ketebalannya tereduksi tidak boleh kurang dari 90 mm; dan

(b) Bila digunakan ketebalan dinding tereduksi 100 mm atau kurang, minimum satu batang tulangan vertikal No. 13 berjarak pusat ke pusat 600 mm harus ditempatkan pada muka tarik. Batang tulangan ini harus menerima paling sedikit 300 mm ke dalam penampang tebal penuh, dan sepanjang tinggi penuh dari penampang dengan ketebalan tereduksi. Selimut beton harus dipertahankan sesuai dengan Pasal 5.3.

8.2.5 *Restrain lateral*—Tekanan fluida ekuivalen timbunan harus ditentukan, tetapi dalam semua kasus tidak boleh diambil kurang dari 1,44 kN/m². Dinding fondasi harus direstrain sisi atas dan bawahnya terhadap pergerakan lateral. Restrain atas dan bawah untuk dinding fondasi harus ditempatkan sebelum perumahan timbunan terhadap dinding fondasi. Penggunaan restrain lateral sementara diizinkan.

CATATAN Joint dengan detail yang baik antara dinding dan slab interior atau joint dinding ke fondasi tapak yang memenuhi Pasal 7.3.4 harus memberikan bresing pada dasar dinding. Nilai tekanan fluida ekuivalen dapat ditentukan menggunakan ASCE/SEI 7, standar bangunan umum, atau laporan ahli geoteknik lokal.

8.2.5.1 *Sambungan ke sistem penumpu lateral di sisi atas dinding*—Sambungan yang baik dengan penggunaan angkur baja harus dipasang antara sisi atas dinding dan sistem bresing lateral. Spasi dan ukuran angkur yang menyalurkan gaya lateral akibat tekanan tanah ke sistem bresing lateral harus memenuhi (a) sampai (e):

(a) Diameter angkur minimum harus sebesar 13 mm;

(b) Kedalaman pembenaman angkur minimum yang ditetapkan harus sebesar 150 mm;

(c) Spasi angkur maksimum yang ditetapkan harus sebesar 1,8 m;

(d) Minimum satu angkur harus ditempatkan dalam 300 mm pada setiap perubahan arah, tinggi, atau pemberhentian dinding; dan

(e) Minimum satu angkur harus ditempatkan dalam 300 mm pada sisi setiap bukaan pintu atau jendela.

CATATAN Jika memungkinkan, sambungan antara sistem penumpu lateral harus diperiksa oleh Tenaga Ahli Bersertifikat — sebagai contoh, kondisi dengan tekanan tanah yang tinggi, seperti tekanan tanah sebesar 2 kN/m² atau dinding tinggi sebesar 3 m.

8.2.6 *Ukuran tulangan minimum yang ditetapkan*—Ukuran batang tulangan minimum yang ditetapkan untuk tulangan dinding harus No. 13.

8.2.7 *Balok lintel*
8.2.7.1 Balok lintel yang memenuhi persyaratan empiris yang diberikan dalam (a) sampai (d) diizinkan:

(a) Tinggi balok lintel tidak boleh kurang dari 200 mm;
(b) Bentang balok lintel tidak boleh melebihi 1 m; dan
(c) Minimum dua batang tulangan bawah No. 13 harus diteruskan hingga sekurang-kurangnya 600 mm ke dalam dinding di setiap ujungnya.

Selimut beton harus dipertahankan sesuai Pasal 5.3.

CATATAN Merujuk pada Gambar 10.

8.2.8 Tulangan horizontal—Baik untuk dinding beton bertulang maupun polos, tulangan horizontal harus disediakan sesuai dengan (a) sampai (f). Untuk Kategori Desain Seismik D₀, D₁, dan D₂, ketentuan (g) harus ditambahkan:

(a) Bila tinggi dinding melebihi 1,8 m, minimum tiga batang tulangan horizontal menerus harus disediakan;
(b) Bila tinggi dinding melebihi 2,4 m, minimum empat batang tulangan horizontal menerus harus disediakan;
(c) Untuk semua ketinggian dinding, minimum satu batang tulangan horizontal harus ditempatkan dalam jarak 600 mm dari sisi atas dan bawah. Batang tulangan yang disyaratkan sisanya harus dipasang sepanjang tinggi dinding secara praktis dengan jarak seseragam mungkin;
(d) Tulangan horizontal harus diletakkan sedekat dan sepraktis mungkin dengan sisi tarik dinding, tetapi di belakang tulangan vertikal bilamana ada;
(e) Panjang lewatan tulangan tidak boleh kurang dari 600 mm; dan
(f) Di sudut-sudut, tulangan horizontal harus menerus mengelilingi sudut-sudut dan tulangan lewat minimum yang ditekapkan sebesar $30d_b$.

(g) Dua batang tulangan horizontal No. 13 harus ditempatkan dalam jarak 300 mm dari sisi atas dinding.

Gambar 8 - Dinding fondasi beton bertulang

- Muka tarik dinding
- Tulangan vertikal
- Tulangan horizontal
- Selimut beton
- Fondasi tapak dinding
- Slab di atas tanah
- Timbunan tak selimbang
- Garis tanah akhir
- Angkur baja
- Sistem penumpu lateral atas (di luar lingkup)

SNI 8140:2016

© BSN 2016 31 dari 50
Gambar 9 - Reduksi ketebalan dinding
8.2.9 **Tulangan dinding tambahan**—Pada fondasi tapak dinding tak menerus, bila perubahan elevasi fondasi tapak dinding lebih besar dari dua kali tebal fondasi tapak, tempatkan minimum dua batang tulangan horizontal No. 13, satu di sisi atas dan lainnya di sisi bawah dinding, sebagai tambahan pada tulangan dinding lainnya yang disyaratkan. Batang tulangan ini harus menerus di setiap ujung paling sedikit 900 mm ke dalam bagian dinding yang ditumpu secara langsung oleh fondasi tapak dinding atas dan bawah. Batang tulangan harus ditempatkan dalam sepertiga tengah tebal dinding. Selimut beton harus dipertahankan sesuai Pasal 5.3.

8.2.10 **Sudut re-entrant**—Bilamana bukaan dinding, atau perubahan elevasi mendadak lebih besar dari 200 mm pada sisi atas dan bawah dinding, menimbulkan suatu sudut re-entrant, paling sedikit satu batang tulangan No. 13, panjang 600 mm, harus dipasang secara diagonal sedekat dan sepraktis mungkin dengan sudut re-entrant.

CATATAN Tulangan ini dipasang untuk membatasi lebar retak dinding yang disebabkan oleh sudut re-entrant yang dibentuk oleh jendela atau pintu. Merujuk pada Gambar 11.
8.3 Konstruksi

8.3.1 Cetakan—Cetakan dinding fondasi harus stabil selama pengecoran beton dan harus menghasilkan struktur yang memenuhi bentuk, garis, dan dimensi yang disyaratkan oleh gambar desain dan spesifikasi. Penutup (blockout), sisipan, sekat (bulkhead), benda-benda yang dibenamkan, dan tulangan harus dipasang dalam cetakan dengan cara demikian sehingga dimensi, kelurusan, dan elevasi berada dalam toleransi yang ditetapkan.

Sekat membentuk tepi joint konstruksi dan digunakan pada ujung akhir pengecoran jika direncanakan atau diantisipasi akan adanya interupsi. Toleransi umum untuk beton perumahan dapat diperoleh dari SNI 2847-2013.

8.3.2 Joint konstruksi—Permukaan joint harus bersih dan dibasahi dan genangan air harus dihilangkan dari cetakan sebelum beton dicor.

CATATAN Joint konstruksi diperlukan jika terdapat interupsi pengecoran beton.

8.3.2.1 Joint konstruksi harus diorientasikan secara vertikal pada dinding beton polos. Joint konstruksi horizontal atau vertikal diperbolehkan pada dinding beton bertulang.

8.3.2.2 Untuk joint konstruksi vertikal, minimum tiga batang tulangan horizontal, berjarak seragam, harus menerus melewati joint konstruksi, dengan panjang minimum yang ditetapkan sebesar 600 mm pada setiap sisi joint.

8.3.2.3 Joint konstruksi harus ditutup untuk mencegah masuknya rembesan air, pasta, atau mortar melalui joint.
CATATAN Pengedap airan eksternal dan pemberhentian air internal adalah metoda yang umum dipergunakan untuk menghasilkan joint konstruksi yang kedap air.

8.3.3 Ketidakberaturan permukaan—Sirip atau proyeksi beton yang lebih dari 13 mm harus dihilangkan setelah pembongkaran cetakan. Daerah permukaan dimana rongga yang dihasilkan dari proses pengedoran beton menyebabkan tulangan terespos, harus diperbaiki.

CATATAN Sirip atau proyeksi beton perlu dihilangkan dari permukaan dinding eksterior agar tindak mengganggu pemasangan sistem pengedap lembaban dan pengedap airan. Sirip atau proyeksi beton juga perlu dihilangkan dari permukaan dinding interior agar tidak mengganggu sistem penyelesaian interior dimana permukaan dinding digunakan untuk menutupi ruang yang dihuni.

9 Desain Untuk Tanah Ekspansif

9.1 Umum

9.1.1 Desain fondasi tapak dan fondasi untuk bangunan gedung dan struktur yang didirikan di atas tanah ekspansif harus memenuhi Pasal 9.3.1 atau 9.3.2.

9.1.2 Bila tanah ekspansif dihilangkan sampai suatu kedalaman yang memastikan kadar kelembapan konstan dalam tanah yang tersisa, atau bila tanah distabilisasikan sesuai dengan standar bangunan gedung umum, desain fondasi tapak dan fondasi untuk bangunan gedung dan struktur tidak perlu memenuhi Pasal 9.3.1 dan 9.3.2.

9.1.3 Material pengisi harus memenuhi standar bangunan gedung umum dan tidak boleh mengandung tanah ekspansif.

9.2 Klasifikasi tanah ekspansif

Tanah harus dianggap ekspansif bila pengujian memenuhi bagian (a) atau bila tanah yang diuji memenuhi bagian (b), (c), dan (d):

(a) Indeks Ekspani (IE) lebih besar dari 20, yang ditentukan sesuai dengan ASTM D4829;

(b) Indeks Plastisitas (IP) sebesar 15 atau lebih besar, yang ditentukan sesuai dengan ASTM D4318;

(c) Lebih dari 10% partikel tanah melewati ayakan No. 200, yang ditentukan sesuai dengan ASTM D422; dan

(d) Lebih dari 10% partikel tanah kurang dari ukuran 5 mikrometer, yang ditentukan sesuai dengan ASTM D422.

9.3 Desain

9.3.1 Fondasi tapak dan fondasi—Fondasi tapak atau fondasi dicor di atas atau dalam daerah kelembapan aktif dari tanah ekspansif harus didesain untuk menahan perubahan perbedaan volume dan untuk mencegah kerusakan pada struktur yang ditumpu.

Fondasi yang menerus ke dalam atau menembus tanah ekspansif harus didesain untuk mencegah struktur yang ditumpunya terangkat ke atas, dan untuk menahan gaya yang diberikan pada fondasi akibat perubahan volume tanah, atau harus dipisahkan dari tanah ekspansif.
CATATAN Batasan defleksi dan retak dari struktur yang ditumpu, merujuk pada standar bangunan umum.

9.3.2 Fondasi slab di atas tanah—Fondasi slab di atas tanah, mat, atau raft di atas tanah ekspansif harus didesain menggunakan momen, geser, dan defleksi yang diturunkan dari analisis yang memperhitungkan aksi kombinasi dari bentuk terdeformasi tumpuan tanah, aksi slab atau slab yang diperkaku, demikian juga untuk kondisi tepi yang naik dan tepi yang turun.

10 Slab di atas tanah

10.1 Desain

Slab di atas tanah harus didesain dengan mempertimbangkan beban yang diantisipasi dan kapasitas daya dukung tanah atau timbunan yang menumpu slab. Pasal 10 harus diterapkan pada slab di atas tanah yang memenuhi kondisi berikut:

(a) Dikenai beban yang diakibatkan dari pejalan kaki atau kendaraan dengan kapasitas penumpang sebanyak sembilan orang atau kurang dan memenuhi nilai yang tercantum dalam Tabel 2 dan 3; dan

(b) Dibangun di atas tanah yang tidak diklasifikasikan sebagai ekspansif oleh standar bangunan gedung umum.

Slab di atas tanah yang tidak memenuhi (a) adalah di luar lingkup Standar ini dan yang tidak memenuhi (b) harus didesain menurut Pasal 9.3.2.

CATATAN Ketentuan ini berlaku untuk slab di atas tanah dimana bebannya tidak melebihi yang direncanakan akibat lalu lintas pejalan kaki dan kendaraan penumpang. Setiap slab yang dicor di atas tanah yang tidak cocok untuk menumpu beban yang bekerja, terletak di atas rongga, atau yang tidak tertumpu menerus harus direncanakan dan dibangun sebagai slab struktural. Sebagai tambahan, rujuk standar bangunan umum untuk persyaratan yang berhubungan dengan penggunaan penghambat penguapan (vapor retarder), drainase dengan dasaran granular (granular base drainage), pengedapairan (waterproofing), dan pengedaplembapan (damp proofing).

10.2 Tumpuan

Slab di atas tanah harus secara menerus didukung di atas tanah tak terganggu atau dengan timbunan dan dasar (base) seperti yang dijelaskan dalam Pasal 10.2.1 dan 10.2.2.

10.2.1 Timbunan—Timbunan harus dipadatkan untuk menyediakan tumpuan seragam dan tidak boleh mengandung material organik atau asing yang membahayakan. Kedalaman timbunan tidak boleh melebihi 600 mm untuk pasir atau kerikil bersih dan 200 mm untuk tanah yang sesuai, kecuali jika disetujui oleh petugas instansi lokal.

10.2.2 Dasar—Lapisan dasar (base) tebal 100 mm yang mengandung pasir ayak, kerikil, batu pecah, slag pecah, atau beton hancur daur ulang bersih yang melewati ayakan 50 mm harus ditempatkan di atas tanah dasar yang disiapkan ketika slab berada di bawah tanah.
10.3 Cetakan

Cetakan untuk slab di atas tanah harus dibresing untuk mempertahankan posisi horizontal dan vertikal dengan kekuatan yang cukup untuk menahan tekanan beton dan beban yang bekerja dari pengcoran mekanikal dan peralatan penyelesaian.

10.4 Ketebalan

Ketebalan slab di atas tanah minimum yang ditetapkan harus sebesar 90 mm.

CATATAN Dinding penumpu interior pada slab di atas tanah bisa membutuhkan fondasi tapak yang dipertebal untuk mendistribusikan beban-beban. Rujuk Gambar 4 untuk fondasi tapak dipertebal tanpa menggunakan cetakan.

10.5 Joint

10.5.1 Joint konstruksi—Joint konstruksi yang dicetak harus dipergunakan saat operasi pengcoran beton dihentikan dalam waktu yang cukup lama dimana beton yang dicor sebelumnya telah mengalami pengikatan/pengerasan.

10.5.2 Joint kontraksi—Joint kontraksi harus memenuhi (a) sampai (e). Alternatifnya, joint isolasi yang memenuhi Pasal 10.5.3 dapat dipergunakan sebagai joint kontraksi.

(a) Joint harus dicetak, digergaji, atau dibuat dengan alat;

(b) Spasi joint tidak boleh melebihi batasan dalam Tabel 7 kecuali jika slab tersebut dipasangi tulangan sesuai dengan Pasal 10.6.2;

(c) Penampang slab yang ditentukan oleh joint kontraksi harus mempunyai rasio tidak lebih besar dari 1,5;

(d) Kedalaman joint yang ditetapkan harus minimum sebesar 1/4 tebal slab untuk joint yang dicetak (formed joint) atau yang dibuat dengan alat (tooled joint), atau joint yang digergaji yang dipotong saat kering (dry-cut sawed joint) pada beton yang mengeras; dan

(e) Kedalaman joint yang ditetapkan harus minimum sebesar 25 mm untuk ketebalan slab sampai dengan 230 mm pada joint yang digergaji yang dimulai dari awal (early-entry sawed joint).

CATATAN Joint kontraksi diperlukan karena terjadi susut beton (perpendekan) dengan rasio kira-kira 16 mm untuk setiap 30 m berdasarkan data empiris. Dinding penumpu interior tidak menumpu secara langsung pada slab di atas tanah tanpa memperhatikan lokasi relatif joint kontraksi terhadap dinding penumpu. Penyelesaian lantai (seperti karpet atau keramik) harus memperhatikan instruksi dari fabrik untuk menentukan kemampuan penutup lantai menutupi joint kontraksi. Spasi joint sesuai Tabel 7 bisa saja tidak mampu mengatasi retak acak pada slab beton. Pengalaman menunjukkan bahwa penggunaan joint yang digergaji yang dimulai dar awal (early-entry concrete saw) segera setelah pengikatan final, atau penggergajian konvensional, cenderung dapat mengurangi retak pada joint yang digergaji. Rujuk ACI 302.1R untuk informasi lebih lanjut tentang pembatasan retak pada slab di atas tanah.
Tabel 7 - Spasi maximum joint kontraksi yang ditetapkan untuk slab di atas tanah tanpa tulangan baja

<table>
<thead>
<tr>
<th>Tebal slab h, mm</th>
<th>Ukuran maksimum agregat yang ditetapkan kurang dari 20 mm</th>
<th>Ukuran maksimum agregat yang ditetapkan 20 mm dan lebih besar</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>2,4 m</td>
<td>3,0 m</td>
</tr>
<tr>
<td>110</td>
<td>3,0 m</td>
<td>4,0 m</td>
</tr>
<tr>
<td>140</td>
<td>3,7 m</td>
<td>4,6 m</td>
</tr>
</tbody>
</table>

10.5.3 Joint isolasi—Joint isolasi harus menerus sepanjang tinggi penuh slab. Bilamana lalu lintas kendaraan melintasi joint isolasi, tebal slab harus ditingkatkan paling sedikit 25% pada joint dan dimiringkan kembali (tapered back) sampai tebal yang ditetapkan sepanjang jarak tidak kurang dari 300 mm dari joint.

CATATAN Biasanya joint isolasi menggunakan bahan pengisi joint yang dicetak sebelumnya (premoulded) dengan ketebalan sekurang-kurangnya 20 mm. Joint isolasi dipergunakan bila:
(a) Tepi slab berdekatan dengan slab di atas tanah lainnya atau dinding; dan
(b) Terdapat suatu elemen kaku yang menembus slab di atas tanah.
Joint isolasi dibentuk pada penetrasi elemen yang kaku dengan cara membungkus elemen dengan material pengisi yang tahan tekanan.

10.6 Tulangan

10.6.1 Tulangan baja—Tulangan harus terdiri dari batang tulangan ulir atau tulangan kawat las yang memenuhi Pasal 4.2.1 atau 4.2.2 dan harus dipasang dan dijaga pada posisi di 2/3 bagian atas tebal slab dengan selimut beton minimum yang ditetapkan sebesar 20 mm untuk kondisi interior dan 40 mm untuk kondisi eksterior. Tulangan harus ditumpu dengan suatu cara agar dapat mempertahankan posisinya selama pengecoran beton.

10.6.2 Tulangan baja minimum berdasarkan spasi joint—Untuk membatasi lebar retak, perlu dipasang joint kontraksi sesuai dengan Pasal 10.5.2, atau tulangan dengan luasan minimum dalam kedua arah. Luasan minimum tulangan yang ditetapkan harus sama dengan 0,5% kali luasan penampang slab untuk spasi joint yang melebihi 100h, dengan h adalah tebal slab. Untuk spasi joint antara 24h dan 100h, luasan minimum tulangan yang ditetapkan harus dihitung dengan interpolasi linier dari 0,1% pada 24h sampai 0,5% pada 100h.
Lampiran A
(Normatif)

Tabel Preskriptif untuk dinding fondasi

A.1
Tabel A.1 sampai A.10 berdasarkan pada kondisi yang dijumpai dalam Pasal A.1.1 sampai A.1.3.

A.1.1 *Asumsi umum*

a) Komponen struktur lentur vertikal bertumpuan sederhana;
b) Ditumpu secara lateral di sisi atas dan bawah;
c) Gaya aksial diabaikan;
d) Berat sendiri diabaikan;
e) Tidak ada batasan defleksi yang ditinjau karena tebal dinding dan batasan pembebanan ditetapkan;
f) Pembebanan yang ditinjau hanya tekanan fluida ekuivalen tanah (gunakan 30, 45, 60, dan 100 kN/m²);
g) Tinggi dinding tak tertumpu maksimum adalah 2,4, 2,7, dan 3 m, dengan tinggi timbunan tak seimbang maksimum masing-masing setinggi 2,1, 2,4, and 3 m;
h) Rentang kekuatan tekan beton yang ditetapkan \(f'_c \) yang ditinjau adalah 17 sampai 31 MPa;
i) Kekuatan leleh tulangan, \(f_y \), adalah 280 atau 420 MPa; dan
j) Bangunan gedung tidak boleh ditetapkan dengan Kategori Desain Seismik D, E, atau F, seperti didefinisikan dalam Pasal 1.3.1.

A.1.2 *Ketentuan SNI 2847:2013 yang perlu dimodifikasi—Ketentuan kriteria desain ACI 318M perlu dimodifikasi atau tidak termasuk dalam tinjauan ini adalah sebagai berikut:*

(a) Pers. (22-2) dimodifikasi menjadi \(M_n = 0,625 \lambda \sqrt{f'_c} S_m \);
(b) Pasal 22.6.6 tidak termasuk; dan
(c) Pasal 14.3 tidak termasuk.

A.1.3 *Persyaratan konstruksi:*

(a) Tebal dinding aktual minimum yang ditetapkan: 190, 240, dan 290 mm;
(b) Selimut beton ke tulangan vertikal: 20 mm;
Tabel A.1—Spasi batang tulangan vertikal untuk dinding besmen beton

<table>
<thead>
<tr>
<th>Tinggi dinding tak tertumpu, m</th>
<th>$\bar{c} = 17$ MPa</th>
<th>Tekanan fluida tanah ekivalen maksimum yang ditetapkan, kN/m²</th>
<th>Batang tulangan</th>
<th>Tebal dinding minimum yang ditetapkan, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$f_y = 280$ MPa</td>
<td>4.5</td>
<td>7.0</td>
<td>9.5</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>1,75</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>2.75</td>
<td>1,75</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
<td>1,75</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>3.75</td>
<td>1,75</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>No. 13 @ mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
</tbody>
</table>

Catatan:
1. Istilah “polos” merujuk pada beton dimana tidak ada tulangan vertikal disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.
2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen tanah, kekuatan beton, dan kekuatan tulangan.
3. Tabel ini dapat diterapkan hanya bilamana struktur tidak ditetapkan pada Kategori Desain Seismik (KDS) D, E, atau F.
5. Untuk mutu tulangan antara, dapat dilakukan interpolasi linier.
Tabel A.2—Spasi batang tulangan vertikal untuk dinding besmen beton

<table>
<thead>
<tr>
<th>Timbunan tak seimbang, m</th>
<th>Batang tulangan</th>
<th>1.75</th>
<th>2.00</th>
<th>2.25</th>
<th>2.50</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>5,5</td>
<td>7,0</td>
<td>9,0</td>
<td>11,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
<td>4.00</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>130</td>
<td>150</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
<td>4.00</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>130</td>
<td>150</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
<td>4.00</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>130</td>
<td>150</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
<td>4.00</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>130</td>
<td>150</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
<td>4.00</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>130</td>
<td>150</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
<td>4.00</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>130</td>
<td>150</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
<td>240</td>
</tr>
</tbody>
</table>

Catatan:
1. Istilah “polos” merujuk pada beton dimana tidak ada tulangan vertical disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.
2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen tanah, kekuatan beton, dan kekuatan tulangan.
3. Tabel ini dapat diterapkan hanya bilamana struktur tidak diletapkan pada Kategori Desain Seismik (KDS) D, E, atau F.
5. Untuk mutu tulangan antara, interpolasi linier dapat dilakukan.
Tabel A.3—Spasi batang tulangan vertikal untuk dinding besmen beton

<table>
<thead>
<tr>
<th>Tinggi dinding tak tertumpu, m</th>
<th>Timbunan tak seimbang, m</th>
<th>Batang</th>
<th>f_y = 21 MPa</th>
<th>4,5</th>
<th>7,0</th>
<th>9,5</th>
<th>12</th>
<th>15,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,50</td>
<td>1,75</td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>2,75</td>
<td>1,75</td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>3,00</td>
<td>1,75</td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
</tbody>
</table>

Catatan:

1. Istilah "polos" merujuk pada beton dimana tidak ada tulangan vertikal disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.
2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen maksimum yang ditetapkan, 4kN/m².
3. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen maksimum yang ditetapkan, 4kN/m².
5. Untuk mutu tulangan antara, interpolasi linier dapat dilakukan.
<table>
<thead>
<tr>
<th>Timbunan tak seimbang, m</th>
<th>Batang tulangan</th>
<th>Tebal dinding minimum yang ditetapkan, mm</th>
</tr>
</thead>
</table>

Catatan:
1. Istilah “polos” merujuk pada beton dimana tidak ada tulangan vertikal disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.
2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen tanah, kekuatan beton, dan kekuatan tulangan.
3. Tabel ini dapat diterapkan hanya bilamana struktur tidak diletakkan pada Kategori Desain Seismik (KDS) D, E, atau F.
5. Untuk mutu tulangan antara, interpolasi linier dapat dilakukan.

© BSN 2016 43 dari 50
<table>
<thead>
<tr>
<th>Tinggi dinding tak tertumpu, m</th>
<th>Timbunan tak seimbang, m</th>
<th>Batang tulangan</th>
<th>3.00</th>
<th>2.75</th>
<th>2.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75</td>
<td>No. 13 a ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>2.00</td>
<td>No. 13 a ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>2.25</td>
<td>No. 13 a ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>2.50</td>
<td>No. 13 a ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
</tbody>
</table>

Catatan:

1. Istilah "polos" merujuk pada beton dimana tidak ada tulangan vertikal disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.

2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen tanah, kekuatan beton, dan kekuatan tulangan.

3. Tabel ini dapat diterapkan hanya bilamana struktur tidak ditetapkan pada Kategori Desain Seismik (KDS) D, E, atau F.

5. Untuk mutu tulangan antara, interpolasi linier dapat dilakukan.
Tabel A.6—Spasi batang tulangan vertikal untuk dinding besmen beton

<table>
<thead>
<tr>
<th>Tinggi dinding tak tertumpu, m</th>
<th>Timbunan tak seimbang, m</th>
<th>Batang tulangan</th>
<th>(f'_c = 24) MPa</th>
<th>(f'_c = 420) MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5</td>
<td>7,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9,5</td>
<td>15,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,50</td>
<td>1,75</td>
<td>No. 13 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>1180 Polos Polos 705 930 Polos</td>
</tr>
<tr>
<td></td>
<td>2,00</td>
<td>No. 13 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>550 Polos Polos 460 Polos</td>
</tr>
<tr>
<td></td>
<td>2,50</td>
<td>No. 13 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>840 Polos Polos 460 Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>500 Polos Polos 460 Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>705 Polos Polos 460 Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td>2,75</td>
<td>1,75</td>
<td>No. 13 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>1070 Polos Polos 635 840 Polos</td>
</tr>
<tr>
<td></td>
<td>2,00</td>
<td>No. 13 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>760 Polos Polos 635 635 Polos</td>
</tr>
<tr>
<td></td>
<td>2,50</td>
<td>No. 13 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>910 Polos Polos 635 390 Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>405 Polos Polos 635 390 Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>450 Polos Polos 635 390 Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td>3,00</td>
<td>1,75</td>
<td>No. 13 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>1070 Polos Polos 800 750 Polos</td>
</tr>
<tr>
<td></td>
<td>2,00</td>
<td>No. 13 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>760 Polos Polos 800 750 Polos</td>
</tr>
<tr>
<td></td>
<td>2,50</td>
<td>No. 13 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>910 Polos Polos 800 750 Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>405 Polos Polos 800 750 Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos Polos Polos</td>
<td>450 Polos Polos 800 750 Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>190</td>
<td>240</td>
</tr>
</tbody>
</table>

Catatan:

1. Istilah “polos” merujuk pada beton dimana tidak ada tulangan vertikal disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.
2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen tanah, kekuatan beton, dan kekuatan tulangan.
3. Tabel ini dapat diterapkan hanya bilamana struktur tidak diletakkan pada Kategori Desain Seismik (KDS) D, E, atau F.
5. Untuk mutu tulangan antara, interpolasi linier dapat dilakukan.

© BSN 2016 45 dari 50
Tabel A.7—Spasi batang tulangan vertikal untuk dinding besmen beton

<table>
<thead>
<tr>
<th>Tinggi dinding tak tertumpu, m</th>
<th>$f_y = 25$ MPa</th>
<th>$f_y = 280$ MPa</th>
<th>Tekanan fluida tanah ekuivalen maksimum yang ditetapkan, kN/m²</th>
<th>Tebal dinding minimum yang ditetapkan, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.75</td>
<td>2.00</td>
<td>2.25</td>
<td>2.50</td>
<td>2.75</td>
<td>3.00</td>
<td>2.50</td>
</tr>
<tr>
<td>Timbunan tak seimbang, m</td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
</tr>
<tr>
<td>Batang tulangan</td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
<td>240</td>
<td>290</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>Catatan:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Istilah “polos” merujuk pada beton dimana tidak ada tulangan vertikal disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen tanah, kekuatan beton, dan kekuatan tulangan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Tabel ini dapat diterapkan hanya bilamana struktur tidak ditetapkan pada Kategori Desain Seismik (KDS) D, E, atau F.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Untuk mutu tulangan antara, interpolasi linier dapat dilakukan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel A.8—Spasi batang tulangan vertikal untuk dinding besmen beton

<table>
<thead>
<tr>
<th>Tinggi dinding tak tertumpu, m</th>
<th>No. 19 @ ... mm</th>
<th>No. 16 @ ... mm</th>
<th>No. 13 @ ... mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td></td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td></td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td></td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td>2.75</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td></td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td></td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td></td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td>3.00</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td></td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
<tr>
<td></td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
<td>Polos Polos Polos</td>
</tr>
</tbody>
</table>

Catatan:
1. Istilah “polos” merujuk pada beton dimana tidak ada tulangan vertikal disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.
2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen tanah, kekuatan beton, dan kekuatan tulangan.
3. Tabel ini dapat diterapkan hanya bilamana struktur tidak diletapkan pada Kategori Desain Seismik (KDS) D, E, atau F.
5. Untuk mutu tulangan antara, interpolasi linier dapat dilakukan.

© BSN 2016
47 dari 50
Tabel A.9—Spasi batang tulangan vertikal untuk dinding besmen beton

<table>
<thead>
<tr>
<th>Tinggi dinding tak tertumpu, m</th>
<th>Tekanan fluida tanah ekuivalen maksimum yang ditetapkan, kN/m²</th>
<th>Tebal dinding minimum yang ditetapkan, mm</th>
<th>Batang tulangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.5</td>
<td>7.0</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>240</td>
<td>290</td>
</tr>
<tr>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 19 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Catatan:
1. Istilah “polos” merujuk pada beton dimana tidak ada tulangan vertikal disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.
2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tekanan fluida ekuivalen tanah, kekuatan beton, dan kekuatan tulangan.
3. Tabel ini dapat diterapkan hanya bilamana struktur tidak ditetapkan pada Kategori Desain Seismik (KDS) D, E, atau F.
5. Untuk mutu tulangan antara, interpolation linear dapat dilakukan.
Tabel A.10—Spasi batang tulangan vertikal untuk dinding besmen beton

<table>
<thead>
<tr>
<th>Tinggi dinding tak tertumpu, m</th>
<th>Timbunan tak seimbang, m</th>
<th>Batang tulangan</th>
<th>$f_y = 31$ MPa</th>
<th>$f_y = 420$ MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.5</td>
<td>15.5</td>
</tr>
<tr>
<td>2,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,75</td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>2,00</td>
<td>No. 16 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>2,25</td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>2,75</td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td>3,00</td>
<td>No. 13 @ ... mm</td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polos</td>
<td>Polos</td>
<td>Polos</td>
</tr>
</tbody>
</table>

Catatan:

1. Istilah “polos” merujuk pada beton dimana tidak ada tulangan vertikal disyaratkan selain tulangan yang konsisten dengan Pasal 8.2.10 dan dimana tulangan horizontal disyaratkan sesuai dengan Pasal 8.2.8 dan 8.2.9 Standar ini.
2. Tabel ini dapat diterapkan pada dinding dengan tinggi, tinggi timbunan tak seimbang, tebal dinding minimum yang ditetapkan, mm.
3. Tabel ini dapat diterapkan hanya bilamana struktur tidak ditetapkan pada Kategori Desain Seismik (KDS) D, E, atau F.
5. Untuk mutu tulangan antara, interpolasi linier dapat dilakukan.

© BSN 2016 49 dari 50
Bibliografi

ACI 201.2R Guide to Durable Concrete
ACI 222R Protection of Metals in Concrete Against Corrosion
ACI 237R Self-Consolidating Concrete
ACI 302.1R Guide for Concrete Floor and Slab Construction
ACI 304R Guide for Measuring, Mixing, Transporting, and Placing Concrete
ACI 304.6R Guide for Use of Volumetric-Measuring and Continuous-Mixing Concrete Equipment
ACI 305R Hot Weather Concreting
ACI 306R Cold Weather Concreting
ACI 308R Guide to Curing Concrete
ACI 309R Guide for Consolidation of Concrete
ACI 332.1R Guide to Residential Concrete Construction
ACI 347 Guide to Formwork for Concrete
ACI SP-4 Formwork for Concrete
ASCE/SEI 7 Minimum Design Loads for Buildings and Other Structures
ASTM C39M Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
ASTM C42M Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete
ASTM C143M Standard Test Method for Slump of Hydraulic Cement Concrete
ASTM C1580 Standard Test Method for Water-Soluble Sulfate in Soil
California Test 417 Method of Testing Soils and Waters for Sulfate Content, California Department of Transportation
DC10.1 Design of Post-Tensioned Slabs-on-Ground, Post-Tensioning Institute
Method of Test for Determining the Quantity of Soluble Sulfate in Solid (Soil or Rock) and Water Samples, 1973, U.S. Bureau of Reclamation
Taber, L. H.; Belarbi, A.; and Richardson, D. N., 2002, “Effect of Reinforcing Bar Contamination on Steel-Concrete Bond During Concrete Construction,” Innovations in Design with Emphasis on Seismic, Wind and Environmental Loading, Quality Control, Proceedings of the ACI Fifth International Conference, SP-209, V. M. Malhotra, ed., American Concrete Institute, Farmington Hills, MI, Sept., pp. 839-862.